Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue–scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber–hydrogel composites (SF–silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber–hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF–silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard.
Inspired by the depth-dependent inhomogeneity of articular cartilage, it was hypothesized that a novel layered agarose technique, using a 2% (wthol) top and a 3% (wthol) bottom layer, would create an inhomogenous tissue construct with distinct material properties in conjoined regions. The biochemical and mechanical development of these constructs was observed alongside uniform 2% and 3% constructs. Initially, uniform 3?4 agarose disks had the highest bulk Young's modulus (Ey N 28 kPa) of all groups. After 28 days of culture in 20% FBS-containing media, however, uniform 2% chondrocyte-seeded constructs achieved the highest Young's modulus compared to bilayered and 3% agarose disks. Though all three groups contained similar G A G content (-1.5% ww), uniform 2% agarose disks on day 28 possessed the highest collagen content (-1% ww). Unlike in either homogeneous construct type, microscopic analysis of axial strain fields in bilayered constructs in response to applied static compression revealed two mechanically disparate regions on day 0: a softer 2% layer and a stiffer 3% layer. With time in culture, this inhomogeneity became less distinct, as indicated by increased continuity in both the local displacement field and local E y , and depended on the level of FBS supplementation of the feed media, with lower FBS concentrations (10%) more closely maintaining the original distinction of material properties. These results shed positive light on a layered agarose technique for the production of inhomogeneous bilayered chondrocyte-seeded agarose constructs with applications for investigations of chondrocyte mechanotransduction and for possible use in the tissue engineering of inhomogeneous articular cartilage constructs.
This study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous loading, or 6 h of continuous loading per day, with all loading performed 5 days/week. All loaded groups showed significant increases in Young's modulus after one month (vs. free swelling controls), but only loading for a continuous 3 and 6 h showed significant increases in dynamic modulus by this time point. Histological analysis showed that dynamic loading can increase cartilage oligomeric matrix protein (COMP) and collagen types II and IX, as well as prevent the formation of a fibrous capsule around the construct. Type II and IX collagen deposition increased with increased with duration of applied loading. These results point to the efficacy of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs. Furthermore, these results highlight the ability to dictate mechanical properties with variations in mechanical input parameters, and the possible importance of other cartilage matrix molecules, such as COMP, in establishing the functional material properties of engineered constructs.
Assessments of cortisol levels in saliva have been widely used by both researchers and clinicians as an index of adrenal functioning. Quarterly measurements of morning and evening cortisol levels were determined in a longitudinal study of 147 participants (72 women and 75 men) followed for 1 year each. The analysis of salivary cortisol revealed no significant gender or age differences in the sample. There was a sequence effect in quarterly cortisol values with a progressive decrease in serial measurements, especially notable in the morning values; as well as a seasonal variation in cortisol levels with significantly higher levels found in winter and fall, compared with spring and summer. The findings in this study suggest that repeated saliva sampling and seasonal variation in cortisol levels may independently affect adrenal response and, therefore, need to be accounted for in longitudinal studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.