Epoxyeicosatrienoic acids (EETs) are potent endothelium-derived vasodilators formed from cytochrome P-450 metabolism of arachidonic acid. EETs and their diol products (DHETs) are also avidly taken up by endothelial cells and incorporated into phospholipids that participate in signal transduction. To investigate the possible functional significance of EET and DHET incorporation into cell lipids, we examined the capacity of EETs and DHETs to relax porcine coronary arterial rings and determined responses to bradykinin (which potently activates endothelial phospholipases) before and after incubating the rings with these eicosanoids. 14,15-EET and 11,12-EET (5 mumol/L) produced 75 +/- 9% and 52 +/- 4% relaxation, respectively, of U46619-contracted rings, whereas 8,9-EET and 5,6-EET did not produce significant relaxation. The corresponding DHET regioisomers produced comparable relaxation responses. Preincubation with 14,15-EET, 11,12-EET, 14,15-DHET, and 11,12-DHET augmented the magnitude and duration of bradykinin-induced relaxation, whereas endothelium-independent relaxations to aprikalim and sodium nitroprusside were not potentiated. Pretreatment with 2 mumol/L triacsin C (an inhibitor of acyl coenzyme A synthases) inhibited [3H]14,15-EET incorporation into endothelial phospholipids and blocked 11,12-EET- and 14,15-DHET-induced potentiation of relaxation to bradykinin. Exposure of [3H]14,15-EET-labeled endothelial cells to the Ca2+ ionophore A23187 (2 mumol/L) resulted in a 4-fold increased release of EET and DHET into the medium. We conclude that incorporation of EETs and DHETs into cell lipids results in potentiation of bradykinin-induced relaxation in porcine coronary arteries, providing the first evidence that incorporated EETs and DHETs are capable of modulating vascular function.
Epoxyeicosatrienoic acids (EETs) are potent vasodilators derived from cytochrome P-450 metabolism of arachidonic acid. The rapid conversion of EETs to their corresponding dihydroxyeicosatrienoic acids (DHETs) has been proposed as a process whereby EETs are rendered biologically inactive. However, the vascular metabolism of EETs and the vasoactivities of EET metabolites have not been extensively studied. Accordingly, 11,12-EET metabolism was characterized in porcine aortic smooth muscle cells. The cells converted [3H]11,12-EET to 11,12-DHET and to a newly identified metabolite, 7,8-dihydroxy-hexadecadienoic acid (DHHD). 11,12-DHET accumulation in the medium reached a maximum in 2 to 4 hours and then declined, whereas 7,8-DHHD accumulation increased continuously and exceeded the amount of 11,12-DHET by 8 hours. [3H]11,12-EET conversion to radiolabeled 7,8-DHHD was reduced in the presence of unlabeled 11,12-DHET, indicating that 11,12-DHET is an intermediate in the conversion of 11,12-EET to 7,8-DHHD. This is consistent with a pathway whereby 11,12-EET is converted by an epoxide hydrolase to 11,12-DHET, which then undergoes two beta-oxidations to form 7,8-DHHD. In porcine coronary artery rings contracted with a thromboxane mimetic, 11,12-DHET produced relaxation similar in magnitude to that produced by 11,12-EET (77% versus 64% relaxation at 5 mumol/L, respectively). 7,8-DHHD also produced vasorelaxation. Thus, the vasoactivity of 11,12-EET is not eliminated by conversion to 11,12-DHET and 7,8-DHHD. These results suggest that 11,12-DHET and its metabolite, 7,8-DHHD, may contribute to the regulation of vascular tone in the porcine coronary artery and possibly other vascular tissues.
Cytochrome P-450-derived epoxyeicosatrienoic acids (EETs) are avidly incorporated into and released from endothelial phospholipids, a process that results in potentiation of endothelium-dependent relaxation. EETs are also rapidly converted by epoxide hydrolases to dihydroxyeicosatrienoic acid (DHETs), which are incorporated into phospholipids to a lesser extent than EETs. We hypothesized that epoxide hydrolases functionally regulate EET incorporation into endothelial phospholipids. Porcine coronary artery endothelial cells were treated with an epoxide hydrolase inhibitor, 4-phenylchalcone oxide (4-PCO, 20 micromol/l), before being incubated with (3)H-labeled 14,15-EET (14,15-[(3)H]EET). 4-PCO blocked conversion of 14,15-[(3)H]EET to 14,15-[(3)H]DHET and doubled the amount of radiolabeled products incorporated into cell lipids, with >80% contained in phospholipids. Moreover, pretreatment with 4-PCO before incubation with 14,15-[(3)H]EET enhanced A-23187-induced release of radiolabeled products into the medium. In contrast, 4-PCO did not alter uptake, distribution, or release of [(3)H]arachidonic acid. In porcine coronary arteries, 4-PCO augmented 14,15-EET-induced potentiation of endothelium-dependent relaxation to bradykinin. These data suggest that epoxide hydrolases may play a role in regulating EET incorporation into phospholipids, thereby modulating endothelial function in the coronary vasculature.
Noncyclooxygenase metabolites of arachidonic acid (AA) have been proposed to mediate endothelium-dependent vasodilation in the coronary microcirculation. Therefore, we examined the formation and bioactivity of AA metabolites in porcine coronary (PC) microvascular endothelial cells and microvessels, respectively. The major noncyclooxygenase metabolite produced by microvascular endothelial cells was 12(S)-hydroxyeicosatetraenoic acid (HETE), a lipoxygenase product. 12(S)-HETE release was markedly increased by pretreatment with 13(S)-hydroperoxyoctadecadienoic acid but not by the reduced congener 13(S)-hydroxyoctadecadienoic acid, suggesting oxidative upregulation of 12(S)-HETE output. 12(S)-HETE produced potent relaxation and hyperpolarization of PC microvessels (EC(50), expressed as -log[M] = 13.5 +/- 0.5). Moreover, 12(S)-HETE potently activated large-conductance Ca(2+)-activated K(+) currents in PC microvascular smooth muscle cells. In contrast, 12(S)-HETE was not a major product of conduit PC endothelial AA metabolism and did not exhibit potent bioactivity in conduit PC arteries. We suggest that, in the coronary microcirculation, 12(S)-HETE can function as a potent hyperpolarizing vasodilator that may contribute to endothelium-dependent relaxation, particularly in the setting of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.