It is intended for PhD students, teachers and researchers who are interested in probability theory, statistics, and in their applications.The duration of each school is 13 days (it was 17 days up to 2005), and up to 70 participants can attend it. The aim is to provide, in three high-level courses, a comprehensive study of some fields in probability theory or Statistics. The lecturers are chosen by an international scientific board. The participants themselves also have the opportunity to give short lectures about their research work.Participants are lodged and work in the same building, a former seminary built in the 18th century in the city of Saint-Flour, at an altitude of 900 m. The pleasant surroundings facilitate scientific discussion and exchange.
It is well known that there is a mathematical equivalence between 'solving' parabolic partial differential equations (PDEs) and 'the integration' of certain functionals on Wiener space. Monte Carlo simulation of stochastic differential equations (SDEs) is a naive approach based on this underlying principle. In finite dimensions, it is well known that cubature can be a very effective approach to integration. We discuss the appropriate extension of this idea to Wiener space. In the process we develop high-order numerical schemes valid for high-dimensional SDEs and semielliptic PDEs.
We introduce the notions of tree-like path and tree-like equivalence between paths and prove that the latter is an equivalence relation for paths of finite length. We show that the equivalence classes form a group with some similarity to a free group, and that in each class there is a unique path that is tree reduced. The set of these paths is the Reduced Path Group. It is a continuous analogue of the group of reduced words. The signature of the path is a power series whose coefficients are certain tensor valued definite iterated integrals of the path. We identify the paths with trivial signature as the tree-like paths, and prove that two paths are in tree-like equivalence if and only if they have the same signature. In this way, we extend Chen's theorems on the uniqueness of the sequence of iterated integrals associated with a piecewise regular path to finite length paths and identify the appropriate extended meaning for parametrisation in the general setting. It is suggestive to think of this result as a noncommutative analogue of the result that integrable functions on the circle are determined, up to Lebesgue null sets, by their Fourier coefficients. As a second theme we give quantitative versions of Chen's theorem in the case of lattice paths and paths with continuous derivative, and as a corollary derive results on the triviality of exponential products in the tensor algebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.