Regulation of the kinetics of intracellular Ca(2+) signals with a novel, membrane-penetrable, inositol 1,4,5-trisphosphate (InsP(3)) receptor/Ca(2+) channel modulator, 2-amino-ethoxydiphenyl borate (2APB), has been investigated using patch-clamp, whole-cell recording to monitor Ca(2+)-activated Cl(-) currents in single isolated pancreatic acinar cells. 2APB itself fails to evoke a detectable current response but it dramatically changes the kinetics of agonist-induced Ca(2+) release from pulsatile spikes to long-lasting, huge Ca(2+) waves, suggesting that 2APB coordinates local Ca(2+) release to generate global Ca(2+) signals. The regulation by 2APB can be elicited by internal perfusion of InsP(3) in a concentration-dependent manner, indicating that this regulation is not mediated through membrane receptors or G protein signal transduction. The InsP(3) receptor blocker heparin, but not the ryanodine-sensitive receptor blockers ruthenium red or ryanodine, abolishes 2APB-mediated regulation of Ca(2+) release. This results also suggest that 2APB effects are mediated through InsP(3) receptors. 2APB substantially modifies single inward Cl(-) current pulse evoked by the photolytic release of caged InsP(3) but not by caged Ca(2+). These data indicate that 2APB-induced regulation is mediated neither by Ca(2+)-induced Ca(2+) release nor by affecting Cl(-) channel activity directly. We conclude that 2APB regulates the kinetics of intracellular Ca(2+) signals, represented as the change in the Ca(2+) oscillation patterns from brief pulsatile spikes to huge, long-lasting Ca(2+) waves. Moreover, this regulation seems to be mediated through InsP(3)-sensitive Ca(2+) pools. 2APB may act as a novel, useful pharmacological tool to study the genesis of intracellular Ca(2+) signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.