A Lancefield serological group C Streptococcus sp. was isolated from cultured amberjack, Seriola dumerili Risso, and yellowtail, Seriola quinqueradiata Temminck and Schlegel, immunized with Lactococcus garvieae commercial vaccines in Japan. The isolated bacteria were Gram-positive cocci, auto-aggregating in saline, morphologically long chains in growth medium, catalase negative and alpha-haemolytic on blood agar. An almost complete gene sequence of the 16S rDNA of two isolates was determined and compared with that of bacterial strains in the database. The isolates were identified as Streptococcus dysgalactiae based on the results of the 16S rDNA sequence, the bacteriological properties and the Lancefield serological grouping. Oligonucleotide primers specifically designed for the 16S-23S rDNA intergenic spacer region of S. dysgalactiae amplified a gene from all the fish isolates, as well as the type strains alpha-haemolytic S. dysgalactiae subsp. dysgalactiae ATCC430738 and beta-haemolytic S. dysgalactiae subsp. equisimilis ATCC35666, but not those of S. equi ATCC33398, Lactococcus garvieae ATCC43921 and L. garvieae KG9408. The severe necrotic lesions of the caudal peduncle seen in experimentally infected fish were similar to those seen in naturally infected fish.
The activity patterns of mammals are generally categorized as nocturnal, diurnal, crepuscular (active at twilight), and cathemeral (active throughout the day). These patterns are highly variable across regions and seasons even within the same species. However, quantitative data is still lacking, particularly for sympatric species. We monitored the seasonal and diel activity patterns of terrestrial mammals in Hokkaido, Japan. Through an intensive camera-trap survey a total of 13,279 capture events were recorded from eight mammals over 20,344 camera-trap days, i.e., two years. Diel activity patterns were clearly divided into four categories: diurnal (Eurasian red squirrels), nocturnal (raccoon dogs and raccoons), crepuscular (sika deer and mountain hares), and cathemeral (Japanese martens, red foxes, and brown bears). Some crepuscular and cathemeral mammals shifted activity peaks across seasons. Particularly, sika deer changed peaks from twilight during spring–autumn to day-time in winter, possibly because of thermal constraints. Japanese martens were cathemeral during winter–summer, but nocturnal in autumn. We found no clear indication of predator-prey and competitive interactions, suggesting that animal densities are not very high or temporal niche partitioning is absent among the target species. This long-term camera-trap survey was highly cost-effective and provided one of the most detailed seasonal and diel activity patterns in multiple sympatric mammals under natural conditions.
This study was performed to evaluate the efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in red sea bream Pagrus major fed a low-fishmeal (FM) diet. Yearling red sea bream were fed for 34 weeks on low-FM diets either supplemented with taurine, or without taurine, and the tissue taurine and bile pigment concentrations were measured. Compared to the fish fed the FM diet, fish fed the low-FM diet without taurine supplementation resulted in inferior feed performances and higher incidence of green liver related to the morphological transformation of the erythrocytes. In these fish, the hepatopancreatic taurine concentration was significantly lower and hepatopancreatic biliverdin concentration was high compared to the fish fed the FM diet. These parameters were markedly improved by taurine supplementation of the low-FM diet and were similar in levels to the fish fed the FM diet. These results indicate that green liver appearance and inferior feed performances of red sea bream fed the low-FM diet without taurine supplementation were caused by dietary taurine deficiency, and indicate the requirement of taurine supplementation to low-FM diets for red sea bream.KEY WORDS: alternative protein, bile pigment, green liver syndrome, low-fishmeal diet, red sea bream, taurine.
Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of the genus Nocardia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.