There has been a long-standing need for guidelines on the diagnosis and treatment of keloids and hypertrophic scars that are based on an understanding of the pathomechanisms that underlie these skin fibrotic diseases. This is particularly true for clinicians who deal with Asian and African patients because these ethnicities are highly prone to these diseases. By contrast, Caucasians are less likely to develop keloids and hypertrophic scars, and if they do, the scars tend not to be severe. This ethnic disparity also means that countries vary in terms of their differential diagnostic algorithms. The lack of clear treatment guidelines also means that primary care physicians are currently applying a hotchpotch of treatments, with uneven outcomes. To overcome these issues, the Japan Scar Workshop (JSW) has created a tool that allows clinicians to objectively diagnose and distinguish between keloids, hypertrophic scars, and mature scars. This tool is called the JSW Scar Scale (JSS) and it involves scoring the risk factors of the individual patients and the affected areas. The tool is simple and easy to use. As a result, even physicians who are not accustomed to keloids and hypertrophic scars can easily diagnose them and judge their severity. The JSW has also established a committee that, in cooperation with outside experts in various fields, has prepared a Consensus Document on keloid and hypertrophic scar treatment guidelines. These guidelines are simple and will allow even inexperienced clinicians to choose the most appropriate treatment strategy. The Consensus Document is provided in this article. It describes (1) the diagnostic algorithm for pathological scars and how to differentiate them from clinically similar benign and malignant tumors, (2) the general treatment algorithms for keloids and hypertrophic scars at different medical facilities, (3) the rationale behind each treatment for keloids and hypertrophic scars, and (4) the body site-specific treatment protocols for these scars. We believe that this Consensus Document will be helpful for physicians from all over the world who treat keloids and hypertrophic scars.
Keloids can be treated in a number of ways, including by surgery. Multiple studies now show that while surgical monotherapy associates with extremely high rates of recurrence (50%–80%), postoperative radiotherapy can significantly reduce these recurrence rates. Ongoing improvements in radiation technology have further increased the safety and efficacy of this combination protocol. Of the various radiotherapies that have been used in this setting, electron beam (β-ray) irradiation is currently the best due to its excellent dose distribution and safety. The maximal biologically effective dose (BED) for keloids is 30 Gy (using an estimated α / β ratio of 10); increasing the dose has no further benefits and elevates side effects. Over the last two decades, we have modified and then fine-tuned our radiotherapy protocol for keloid excision wounds. Thus, our early protocol was used for all body sites and consisted of 15 Gy/3 fr/3 days. We then customised the radiotherapy protocol so that body sites that are highly prone to recurrence (e.g. the anterior chest) receive higher doses while low recurrence sites like the earlobe receive a much smaller dose. More recently, we tweaked this body site-customised protocol so that fewer fractions are employed. Therefore, we currently apply 18 Gy/3 fr/3 days to high-recurrence sites, 8 Gy/1 fr/1 day to earlobes and 15 Gy/2 fr/2 days to other body sites. These radiotherapy protocol changes were accompanied by the evolution of body site-customised surgical approaches. As a result of these developments, our overall keloid recurrence rate is now below 10%.
Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.
Background: Fibroproliferative disorders result in excessive scar formation, are associated with high morbidity, and cost billions of dollars every year. Of these, keloid disease presents a particularly challenging clinical problem because the cutaneous scars progress beyond the original site of injury. Altered mechanotransduction has been implicated in keloid development, but the mechanisms governing scar progression into the surrounding tissue remain unknown. The role of mechanotransduction in keloids is further complicated by the differential mechanical properties of keloids and the surrounding skin. Methods: The authors used human mechanical testing, finite element modeling, and immunohistologic analyses of human specimens to clarify the complex interplay of mechanical stress, strain, and stiffness in keloid scar progression. Results: Changes in human position (i.e., standing, sitting, and supine) are correlated to dynamic changes in local stress/strain distribution, particularly in regions with a predilection for keloids. Keloids are composed of stiff tissue, which displays a fibrotic phenotype with relatively low proliferation. In contrast, the soft skin surrounding keloids is exposed to high mechanical strain that correlates with increased expression of the caveolin-1/rho signaling via rho kinase mechanotransduction pathway and elevated inflammation and proliferation, which may lead to keloid progression. Conclusions: The authors conclude that changes in human position are strongly correlated with mechanical loading of the predilection sites, which leads to increased mechanical strain in the peripheral tissue surrounding keloids. Furthermore, increased mechanical strain in the peripheral tissue, which is the site of keloid progression, was correlated with aberrant expression of caveolin-1/ROCK signaling pathway. These findings suggest a novel mechanism for keloid progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.