For high temperature thermoelectric applications, Yb14MnSb11 has a maximum thermoelectric figure of merit (zT) of ∼1.0 at 1273 K. Such a high zT is found despite a carrier concentration that is higher than typical thermoelectric materials. Here, we reduce the carrier concentration with the discovery of a continuous transition between metallic Yb14MnSb11 and semiconducting Yb14AlSb11. Yb14Mn1‐xAlxSb11 forms a solid solution where the free carrier concentration gradually changes as expected from the Zintl valence formalism. Throughout this transition the electronic properties are found to obey a rigid band model with a band gap of 0.5 eV and an effective mass of 3 me. As the carrier concentration decreases, an increase in the Seebeck coefficient is observed at the expense of an increased electrical resistivity. At the optimum carrier concentration, a maximum zT of 1.3 at 1223 K is obtained, which is more than twice that of the state‐of‐the‐art Si0.8Ge0.2 flown by NASA.
We introduce a new specification of the social force model in which pedestrians explicitly predict the place and time of the next collision in order to avoid it. This and other specifications of the social force model are calibrated, using genetic algorithms, on a set of pedestrian trajectories, obtained tracking with laser range finders the movement of pedestrians in controlled experiments, and their performance is compared. The results show that the proposed method has a better performance in describing the trajectory set.
We introduce a simple potential to describe the dynamics of the relative motion of two pedestrians socially interacting in a walking group. We show that the proposed potential, based on basic empirical observations and theoretical considerations, can qualitatively describe the statistical properties of pedestrian behavior. In detail, we show that the two-dimensional probability distribution of the relative distance is determined by the proposed potential through a Boltzmann distribution. After calibrating the parameters of the model on the two-pedestrian group data, we apply the model to three-pedestrian groups, showing that it describes qualitatively and quantitatively well their behavior. In particular, the model predicts that three-pedestrian groups walk in a V-shaped formation and provides accurate values for the position of the three pedestrians. Furthermore, the model correctly predicts the average walking velocity of three-person groups based on the velocity of two-person ones. Possible extensions to larger groups, along with alternative explanations of the social dynamics that may be implied by our model, are discussed at the end of the paper.
Lanthanum doping of the high-temperature p-type thermoelectric material Yb14MnSb11 enhances the figure of merit (zT) through carrier concentration tuning. This is achieved by substituting La3+ on the Yb2+ site to reduce the free hole concentration as expected from the change in valence. The high-temperature transport properties (Seebeck coefficient, electrical resistivity, Hall mobility, and thermal conductivity) of Yb13.6La0.4MnSb11 are explained by the change in carrier concentration using a simple rigid parabolic band model, similar to that found in Yb14Mn1−xAlxSb11. Together, use of these two dopant sites enables the partial decoupling of electronic and structural properties in Yb14MnSb11-based materials.
Rare-earth transition metal compounds Yb 14 Mn 1-x Zn x Sb 11 , isostructural with Ca 14 AlSb 11 , have been prepared using a metal flux growth technique for thermoelectric property measurements (with x ) 0.0, 0.2, 0.3, 0.4, 0.7, 0.9, and 1.0). Single-crystal X-ray diffraction and electron microprobe analysis data indicate the successful synthesis of a solid-solution for the Yb 14 Mn 1-x Zn x Sb 11 structure type for 0< x < 0.4. Hot-pressed polycrystalline samples showed that the product from the flux reaction was a pure phase from x ) 0 through x ) 0.4 with the presence of a minor secondary phase for compositions x > 0.4. High-temperature (298 K-1275 K) measurements of the Seebeck coefficient, resistivity, and thermal conductivity were performed on hot-pressed, polycrystalline samples. As the concentration of Zn increases in Yb 14 Mn 1-x Zn x Sb 11 , the Seebeck coefficient remains unchanged for 0 e x e 0.7 indicating that the free carrier concentration has remained unchanged. However, as the nonmagnetic Zn 2+ ions replace the magnetic Mn 2+ ions, the spin disorder scattering is reduced, lowering the resistivity. Replacing the magnetic Mn 2+ with non magnetic Zn 2+ provides an independent means to lower resistivity without deleterious effects to the Seebeck values or thermal conduction. Alloying the Mn site with Zn reduces the lattice thermal conductivity at low temperatures but has negligible impact at high temperatures. The reduction of spin disorder scattering leads to an ∼10% improvement over Yb 14 MnSb 11 , revealing a maximum thermoelectric figure of merit (zT) of ∼1.1 at 1275 K for Yb 14 Mn 0.6 Zn 0.4 Sb 11 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.