A microphysiological system of a lymphatic vessel is presented recapitulating crosstalk of lymphatic endothelial and muscle cells co-cultured cylindrically using a unique gravitational lumen patterning technique.
To find an effective drug for Zika virus, it is important to understand how numerous proteins which are critical for the virus' structure and function interact with their counterparts. One approach to inhibiting the flavivirus is to deter its ability to bind onto glycoproteins; however, the crystal structures of envelope proteins of the ever-evolving viral strains that decipher glycosidic or drug-molecular interactions are not always available. To fill this gap, we are reporting a holistic, simulation-based approach to predict compounds that will inhibit ligand binding onto a structurally unresolved protein, in this case the Zika virus envelope protein (ZVEP), by developing a three-dimensional general structure and analyzing sites at which ligands and small drug-like molecules interact. By examining how glycan molecules and small-molecule probes interact with a freshly resolved ZVEP homology model, we report the susceptibility of ZVEP to inhibition via two small molecules, ZINC33683341 and ZINC49605556-by preferentially binding onto the primary receptor responsible for the virus' virulence. Antiviral activity was confirmed when ZINC33683341 was tested in cell culture. We anticipate the results to be a starting point for drug discovery targeting Zika virus and other emerging pathogens.
When redox enzymes are wired to electrodes outside a living cell (ex vivo), their ability to produce a sufficiently powerful electrical current diminishes significantly due to the thermodynamic and kinetic limitations associated with the wiring systems. Therefore, we are yet to harness the full potential of redox enzymes for the development of self-powering bioelectronics devices (such as sensors and fuel cells). Interestingly, nature uses iron-sulfur complexes ([Fe-S]), to circumvent these issues in vivo. Yet, we have not been able to utilize [Fe-S]-based chains ex vivo, primarily due to their instability in aqueous media. Here, a simple technique to attach iron (II) sulfide (FeS) to a gold surface in ethanol media and then complete the attachment of the enzyme in aqueous media is reported. Cyclic voltammetry and spectroscopy techniques confirmed the concatenation of FeS and glycerol-dehydrogenase/nicotinamide-adenine-dinucleotide (GlDH-NAD(+)) apoenzyme-coenzyme molecular wiring system on the base gold electrode. The resultant FeS-based enzyme electrode reached an open circuit voltage closer to its standard potential under a wide range of glycerol concentrations (0.001-1M). When probed under constant potential conditions, the FeS-based electrode was able to amplify current by over 10 fold as compared to electrodes fabricated with the conventional pyrroloquinoline quinone-based composite molecular wiring system. These improvements in current/voltage responses open up a wide range of possibilities for fabricating self-powering, bio-electronic devices.
ObjectiveAn approach to inhibiting enveloped flaviviruses is to deter the ability of the envelope protein(s) binding onto glycoproteins. In previous work, using a small ~100-amino acid homology model of Zika virus envelope protein (ZVEP), we proved the susceptibility of Zika virus to inhibition. In this work, we verify the efficacy of the homology model based antiviral search method using a larger protein (>400 amino acids) and comparing the results with the experimentally determined one (PDB ID:5IRE).ResultsBy examining how glycan molecules, small-molecule probes and screened ligands that have a high affinity to ZVEP, we report the mechanics of ZVEP to inhibition via allosteric blockage of the glycan-binding domain while proposing even more possibly potent inhibitors. The small molecular probes based study using the homology model and subsequently verified using actual experimental structure, 5IRE, revealed that ZVEP is druggable. A pharmacophore analysis followed by screening showed at least four ligands that allosterically binds to the glycan binding domain constituted by residues VAL 153 and ASN 154 in 5IRE. Based on further selection criteria ZINC40621658 was identified to have high potential to be a strong antiviral candidate for Zika virus inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.