Thiopeptides are natural antibiotics that are fashioned from short peptides by multiple layers of post-translational modification. Their biosynthesis, in particular the pyridine synthases that form the macrocyclic antibiotic core, has attracted intensive research but is complicated by the challenges of reconstituting multiple pathway enzymes. By combining select RiPP enzymes with cell free expression and Flexizyme-based codon reprogramming, we have developed a benchtop biosynthesis of thiopeptide scaffolds. This strategy side-steps several challenges related to the investigation of thiopeptide enzymes and allows access to analytical quantities of new thiopeptide analogs. We further demonstrate that this strategy can be used to validate the activity of new pyridine synthases without the need to reconstitute the cognate prior pathway enzymes.
Spilled oil is highly susceptible to sunlight-induced transformations, both as films on the surface of water and material dissolved or dispersed in the water column. We utilized ultrahigh-resolution mass spectrometry and optical spectroscopy to understand shifts in oil photoproduct distributions as a function of photo-oxygenation. Oxygenation of oil produces compounds that have increased polarity, resulting in greater partitioning to the oil−water interface and eventually greater partitioning into the aqueous phase. Such partitioning was shown to be dependent on the carbon number and oxygen content of the photoproducts, providing an empirical basis for predicting the partitioning of oil photodegradation products between the oil phase, the interfacial region, and into the aqueous phase to form petroleum-derived dissolved organic matter. While such photochemical transformations have been predicted for many years, there has not been direct evidence previously for the photodissolution process. Furthermore, the relationship of carbon number and oxygen content with progression from the oil phase to the interfacial phase to the aqueous phase has not been demonstrated. This paper details this progression and observable properties that can be used to understand oil behavior after a spill during sunlight exposure, thus providing greater predictability of oil fate, transport, impact, and effective remediation strategies.
Lipids have numerous important functions in the human body, as they form the cells' plasma membranes and play a key role in many disease states, presumably also in osteoporosis. Here, the fatty acid composition of the outer plasma membranes of cells differentiated into the osteogenic and adipogenic direction is studied with surface-sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). For data evaluation, principal component analysis (PCA) is applied. Human (bone-derived) mesenchymal stromal cells (hMSCs) from an osteoporotic donor and a control donor are compared to reveal differences in the fatty acid composition of the membranes. The chemical information is correlated to staining and real-time quantitative polymerase chain reaction (rt-qPCR) results to provide insight into the gene expression of several differentiation markers on the RNA level. Adipogenic differentiation of hMSCs from a non-osteoporotic donor correlates with increased relative intensities of all fatty acids under investigation. After osteogenic differentiation of non-osteoporotic cells, the relative mass signal intensities of unsaturated fatty acids such as oleic and linoleic acids are increased. However, the osteoporotic cells show increased levels of palmitic acid in the plasma membrane after exposure to osteogenic differentiation conditions, which correlates to an immature differentiation state relative to non-osteoporotic osteogenic cells. This immature differentiation state is confirmed by increased early osteogenic differentiation factor Runx2 on RNA level and by less calcium mineralization spots seen in von Kossa staining and ToF-SIMS images. Graphical abstract Time-of-flight secondary ion mass spectrometry is applied to analyze the fatty acid composition of the outer plasma membranes of cells differentiated into the adipogenic and osteogenic direction. Cells from an osteoporotic and a control donor are compared to reveal differences due to differentiation and disease stage of the cells.
We report chemical characterization of natural oil seeps from the Gulf of Mexico by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Gas Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry (GC/APCI-MS), to highlight how FT-ICR MS can also be employed as a means to determine petroleum connectivity, in addition to traditional GC/MS techniques. The source of petroleum is the Green Canyon (GC) 600 lease block in the Gulf of Mexico. Within GC600, two natural oil seepage zones, Mega Plume and Birthday Candles, continuously release hydrocarbons and develop persistent oil slicks at the sea surface above them. We chemically trace the petroleum from the surface oil slicks to the Mega Plume seep itself, and further to a petroleum reservoir 5 km away in lease block GC645 (Holstein Reservoir). We establish the connectivity between oil samples and confirm a common geological origin for the oil slicks, oil seep, and reservoir oil. The ratios of seven common petroleum biomarkers detected by GC/APCI-MS display clear similarity between the GC600 and GC645 samples, as well as a distinct difference from another reservoir oil collected ∼300 km away (Macondo crude oil from MC252 lease block). FT-ICR MS and principal component analysis (PCA) demonstrate further similarities between the GC600 and GC645 samples that distinctly differ from MC252. A common geographical origin is postulated for the GC600/GC645 samples, with petroleum migrating from the GC645 reservoir to the oil seeps found in GC600 and up through the water column to the sea surface as an oil slick.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.