Purpose Additive manufacturing or “3D printing” is a rapidly expanding sector and is moving from a prototyping service to a manufacturing service in its own right. With a significant increase in sales, fused deposition modelling (FDM) printers are now the most prevalent 3D printer on the market. The increase in commercial manufacturing necessitates an improved understanding of how to optimise the FDM printing process for various product mechanical properties. This paper aims to identify optimum print parameters for the FDM process to achieve maximum tensile strength through a review of recent studies in this field. Design/methodology/approach The effect of the governing printing parameters on the tensile strength of printed samples will be considered, including material selection, print orientation, raster angle, air gap and layer height. Findings The key findings include material recommendations, such as the use of emerging print materials like polyether-ether-ketone (PEEK), to produce samples with tensile strength over 200 per cent that of conventional materials such as acrylonitrile butadiene styrene (ABS). Amongst other parameters, it is shown that printing in the “upright” orientation should be avoided (samples can be up to 50 per cent weaker in this orientation) and air gap and raster width should be concurrently optimised to ensure good “inter-raster” bonding. The optimal choice of raster angle depends on print material; in ABS for example, selecting a 0° raster angle over a 90° angle can increase tensile strength by up to 100 per cent. Originality/value The paper conclusions provide researchers and practitioners with an up-to-date, single point reference, highlighting a series of robust recommendations to optimise the tensile strength of FDM-printed samples. Improving the mechanical performance of FDM-printed samples will support the continued growth of this technology as a viable production technique.
Highly-dynamic floating bodies such as wave energy convertors require mooring lines with particular mechanical properties; the mooring system must achieve adequate station keeping whilst controlling mooring tensions within acceptable limits. Optimised compliant mooring systems can meet these requirements but where compliance is achieved through system architecture, the complexity of the system increases together with the mooring footprint. This work introduces the "Exeter Tether", a novel fibre rope mooring tether providing advantages over conventional fibre ropes. The tether concept aims to provide a significantly lower axial stiffness by de-coupling this attribute from the minimum breaking load of the line. A benefit of reduced axial stiffness is the reduction of mooring system stiffness providing a reduction of peak and fatigue loads, without increasing mooring system complexity. Reducing these loads improves system reliability and allows a reduction in mass of both the mooring system and the floating body, thus reducing costs. The principles behind the novel tether design are presented here, along with an outline of eight prototype tether variants. Results from the proof of concept study are given together with preliminary findings from sea trials conducted in Falmouth Bay. Results demonstrate that the Exeter Tether can be configured to achieve a significantly lower axial stiffness than conventional OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1288 fibre rope and that the stiffness is selectable within limits for a given breaking strength. Strain values greater than 0.35 are achieved at 30% of line breaking strength; this represents more than a threefold increase of the strain achievable with a conventional rope of the same material. The tether was subjected to six months of sea trials to establish any threats to its own reliability and to inform future design enhancements in this respect.
Technology Readiness Levels (TRLs) are a widely used metric of technology maturity and risk for marine renewable energy (MRE) devices. To-date, a large number of device concepts have been proposed which have reached the early validation stages of development (TRLs 1-3). Only a handful of mature designs have attained pre-commercial development status following prototype sea trials (TRLs 7-8). In order to navigate through the aptly named "valley of death" (TRLs 4-6) towards commercial realisation, it is necessary for new technologies to be de-risked in terms of component durability and reliability. In this paper the scope of the reliability assessment module of the DTOcean Design Tool is outlined including aspects of Tool integration, data provision and how prediction uncertainties are accounted for. In addition, two case studies are reported of mooring component fatigue testing providing insight into long-term component use and system design for MRE devices. The case studies are used to highlight how test data could be utilised to improve the prediction capabilities of statistical reliability assessment approaches, such as the bottom-up statistical method.
The reliability and integrity of components used in the marine offshore environment is paramount for the safety and viability of offshore installations. The engineering challenge is to design components that are robust enough to meet reliability targets whilst lean enough to minimise cost. This is particularly the case for offshore marine renewable installations which operate in the same, possibly harsher, environment as offshore oil and gas installations, and are subjected to highly cyclic and dynamic wave, wind and operational load conditions. The cost of electricity produced has to compete with other means of electricity generation and does thus not offer the same profit margins available as oil and gas commodities. As a result, components for marine renewable installations have to meet the target reliability, without the application of costly safety factors to account for load and environmental uncertainties. Industries with similar design tasks such as the aviation or automotive industry have successfully used a service simulation test approach to develop robust yet lean designs. This paper builds on an approach to establish and validate the reliability of floating renewable energy devices in which dedicated component testing using the purpose built Dynamic Marine Component test rig (DMaC) plays a pivotal role to assess, validate and predict the reliability of components in the marine environment. This paper presents a test rig for both static and fatigue tests of marine components such as mooring lines and mooring shackles under simulated or measured load conditions and provides two case studies from recently conducted mooring component tests. This includes an investigation into the load behaviour of synthetic mooring ropes and the ageing of mooring shackles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.