The research is intended to investigate and synthesize adaptive control over drilling by identifying parameters of an object model under non-stationarity conditions. Methods. Under conditions of rapidly changing borehole drilling indices, a two-level adaptive control strategy is applied, combining investigation of drilling and its control. The structure of the control system includes an additional block of forming the model on the basis of data on indirect features. Findings. The research develops a method for seeking the extremum developed for the object whose dynamics is described by a first-order linear differential equation. The method allows to determine the value of the output signal by evaluating the initial phase of the transient process caused by the changed input signal for a set step. Originality. The suggested algorithm of noise-free identification makes it possible to assess the factor of the control object transfer under the action of random disturbances. The data obtained is used to adjust the gain factor of the controller in the closed loop automatic control system of drilling. Practical implications. The suggested structure and algorithm of drilling control allow enhancing drilling efficiency by ensuring relevant mechanical drilling rates through defining corresponding rotation speeds and axial loads of a drilling tool.
The professional thinking issues are analyzed in the research. The authors pointed that the technical thought concepts, images and practical actions are in a complex and dynamic interaction with each other. The components of professional thinking are considered in detail. The training method based on the implementation of forming influence is proposed. The regression analysis of the students’ academic progress indicators who are trained by the traditional and innovative methodology with forming influence is conducted in the article. Analysis of thinking activity development levels in the process of professional tasks solving performed by the students of the control and experimental groups demonstrated the straight-line correlation dependence of the professional thinking development on the organization of professional activity in general and the training organization in particular.
Purpose. Enhancing energy efficiency and quality of automated control of the technological concentration line, increasing extraction of the useful component into concentrate while processing ironbearing ores of various mineralogical and technological types through developing principles and approaches to distributed optimal control over interrelated processes in concentration production on the basis of the dynamic spacetime model.Methodology. Based on the assumption that final results of concentration plant operation depend on a set of input parameters and results of functioning of interrelated nonlinear dynamic objects, the authors suggest an improved approach to simulating con centration processes for iron ore materials on the basis of VolterraLaguerre structures by using input signals of certain techno logical stages characterizing granulometric composition of processed ore.findings. It is found that while synthesizing models of nonlinear dynamic objects of concentration, it is expedient to apply Volterra structures with the simulation error not exceeding 0.039 under the mean square deviation of 0.0594. Volterra models projected onto orthonormal basis functions enable simplifying parameterization and reducing sensitivity of models to noises. Among other orthonormal functions, Laguerre functions are reasonable to use. All this allows minimizing the number of model parameters in the course of their identification.originality. The method of identifying nonlinear dynamic objects of concentration on the basis of the spacetime Volterra model is improved. This model is different from available ones by its projection onto orthonormal Laguerre basis functions to in crease its robustness to noises.Practical value. Testing results enable deducing efficiency of the spacetime Volterra model in the condition space by means of the Laguerre network, thus increasing accuracy of simulation under noises as compared to the Volterra model through reducing the simulation error by 18.11 % under 40 iterations of identification. The experimental check of identification accuracy by means of the VolterraLaguerre model in the iron content control system in various points of the technological concentration line con firms efficiency of the given method.
Монографія присвячена питанням впровадження парадигми вдосконалення викладання у вищій освіті. Цей напрям є одним із пріоритетів розвитку Європейського простору вищої освіти, до якого належить і вища освіта України. Монографія містить три частини: у першій частині — узагальнено теоретичні основи та політичні передумови реалізації завдання вдосконалення викладання і навчання в університетах; у другій — представлені практики вітчизняних закладів вищої освіти і наукових установ, а також міжнародні проєкти, що реалізуються в Україні та опікуються цією проблематикою; у третій частині — подано практичні рекомендації для університетів і наукових установ щодо створення інституційних моделей, стратегій, підходів, рішень задля підвищення якості викладання і навчання. Монографія стане у нагоді науково-педагогічним працівникам університетів, управлінському персоналу, дослідникам та експертам, які цікавляться проблемою вдосконалення викладання у вищій освіті та безпосередньо відповідають за її вирішення у закладах вищої освіти.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.