A mononuclear copper(II) superoxo species has been invoked as the key reactive intermediate in aliphatic substrate hydroxylation by copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM). We have recently developed a mononuclear copper(II) end-on superoxo complex using a N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane tridentate ligand, the structure of which is similar to the four-coordinate distorted tetrahedral geometry of the copper-dioxygen adduct found in the oxy-form of PHM (Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science2004, 304, 864-867). In this study, structures and physicochemical properties as well as reactivity of the copper(I) and copper(II) complexes supported by a series of tridentate ligands having the same N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane framework have been examined in detail to shed light on the chemistry dictated in the active sites of mononuclear copper monooxygenases. The ligand exhibits unique feature to stabilize the copper(I) complexes in a T-shape geometry and the copper(II) complexes in a distorted tetrahedral geometry. Low temperature oxygenation of the copper(I) complexes generated the mononuclear copper(II) end-on superoxo complexes, the structure and spin state of which have been further characterized by density functional theory (DFT) calculations. Detailed kinetic analysis on the O(2)-adduct formation reaction gave the kinetic and thermodynamic parameters providing mechanistic insights into the association and dissociation processes of O(2) to the copper complexes. The copper(II) end-on superoxo complex thus generated gradually decomposed to induce aliphatic ligand hydroxylation. Kinetic and DFT studies on the decomposition reaction have suggested that C-H bond abstraction occurs unimolecularly from the superoxo complex with subsequent rebound of the copper hydroperoxo species to generate the oxygenated product. The present results have indicated that a superoxo species having a four-coordinate distorted tetrahedral geometry could be reactive enough to induce the direct C-H bond activation of aliphatic substrates in the enzymatic systems.
A series of flavonolate complexes [M(II)L(fla)] (M = Mn (1), Fe (2), Co (3), Ni (4), Cu (5), and Zn (6), LH: 2-{[bis(pyridin-2-ylmethyl)amino]methyl}benzoic acid, fla: flavonolate) have been synthesized as structural and functional models for the ES (enzyme-substrate) complexes of the active site of various M(II)-containing quercetin 2,3-dioxygenase (2,3-QD) and their structures, spectroscopic features, and redox properties, as well as the reactivity toward molecular oxygen, have been investigated. The metal centers of [Fe(II)L(fla)]·H2O (2), [Co(II)L(fla)]·CH3OH (3), and [Ni(II)L(fla)] (4) exhibit a distorted octahedral geometry with two oxygen atoms of fla, one oxygen atom of the benzoate group of ligand L, and three nitrogen atoms of ligand L, in which oxygen atom of the carbonyl group of fla and one of the pyridine nitrogen atoms occupy the axial positions. The complexes [M(II)L(fla)] exhibit relatively high reactivity in the oxidative ring-opening of the bound flavonolate at lower temperature, presumably due to the existing carboxylate group in the supporting ligand. Thus, our complexes act as good functional ES models of various metal(II)-containing 2,3-QD. In addition, complexes [Fe(II)L(fla)]·H2O (2), [Co(II)L(fla)]·CH3OH (3), and [Ni(II)L(fla)] (4) are the first structurally characterized Fe(II)-, Co(II)-, and Ni(II)-flavonolate complexes, as an active site ES model of Fe(II)-, Co(II)-, and Ni(II)-containing 2,3-QD, respectively. The model complexes exhibit notably different reactivity in the order of Fe (2) > Cu (5) > Co (3) > Ni (4) > Zn (6) > Mn (1). The differences in the reactivity among them may be attributed to the redox potential of the coordinated flavonolate of the complexes, which are remarkably influenced by the Lewis acidity of the metal ion and its coordination environment. Our study is the first example of the metal ion effects on the enzyme-like dioxygenation reactivity, providing important insights into the metal ion effects on the enzymatic reactivity of various metal(II)-containing 2,3-QD.
Redox properties of a mononuclear copper(II) superoxide complex, (L)Cu(II)-OO(•), supported by a tridentate ligand (L = 1-(2-phenethyl)-5-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane) have been examined as a model compound of the putative reactive intermediate of peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase (DβM) (Kunishita et al. J. Am. Chem. Soc. 2009, 131, 2788-2789; Inorg. Chem. 2012, 51, 9465-9480). On the basis of the reactivity toward a series of one-electron reductants, the reduction potential of (L)Cu(II)-OO(•) was estimated to be 0.19 ± 0.07 V vs SCE in acetone at 298 K (cf. Tahsini et al. Chem.-Eur. J. 2012, 18, 1084-1093). In the reaction of TEMPO-H (2,2,6,6-tetramethylpiperidine-N-hydroxide), a simple HAT (hydrogen atom transfer) reaction took place to give the corresponding hydroperoxide complex LCu(II)-OOH, whereas the reaction with phenol derivatives ((X)ArOH) gave the corresponding phenolate adducts, LCu(II)-O(X)Ar, presumably via an acid-base reaction between the superoxide ligand and the phenols. The reaction of (L)Cu(II)-OO(•) with a series of triphenylphosphine derivatives gave the corresponding triphenylphosphine oxides via an electrophilic ionic substitution mechanism with a Hammett ρ value as -4.3, whereas the reaction with thioanisole (sulfide) only gave a copper(I) complex. These reactivities of (L)Cu(II)-OO(•) are different from those of a similar end-on superoxide copper(II) complex supported by a tetradentate TMG3tren ligand (1,1,1-Tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (Maiti et al. Angew. Chem., Int. Ed. 2008, 47, 82-85).
Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.
Copper(II) complexes supported by a series of phenol-containing bis(pyridin-2-ylmethyl)amine N(3) ligands (denoted as L(o)H, L(m)H, and L(p)H) have been synthesized, and their O(2) reactivity has been examined in detail to gain mechanistic insights into the biosynthesis of the TPQ cofactor (2,4,5-trihydroxyphenylalaninequinone, TOPA quinone) in copper-containing amine oxidases. The copper(II) complex of L(o)H (ortho-phenol derivative) involves a direct phenolate to copper(II) coordination and exhibits almost no reactivity toward O(2) at 60 °C in CH(3)OH. On the other hand, the copper(II) complex of L(m)H (meta-phenol derivative), which does not involve direct coordinative interaction between the phenol moiety and the copper(II) ion, reacts with O(2) in the presence of triethylamine as a base to give a methoxy-substituted para-quinone derivative under the same conditions. The product structure has been established by detailed nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and electrospray ionization-mass spectroscopy (ESI-MS) (including (18)O-labeling experiment) analyses. Density functional theory predicts that the reaction involves (i) intramolecular electron transfer from the deprotonated phenol (phenolate) to copper(II) to generate a copper(I)-phenoxyl radical; (ii) the addition of O(2) to this intermediate, resulting in an end-on copper(II) superoxide; (iii) electrophilic substitution of the phenolic radical to give a copper(II)-alkylperoxo intermediate; (iv) O-O bond cleavage concomitant with a proton migration, giving a para-quinone derivative; and (v) Michael addition of methoxide from copper(II) to the para-quinone ring and subsequent O(2) oxidation. This reaction sequence is similar to that proposed for the biosynthetic pathway leading to the TPQ cofactor in the enzymatic system. The generated para-quinone derivative can act as a turnover catalyst for aerobic oxidation of benzylamine to N-benzylidene benzylamine. Another type of copper(II)-phenol complex with an L(p)H ligand (para-phenol derivative) also reacts with O(2) under the same experimental conditions. However, the product of this reaction is a keto-alcohol derivative, the structure of which is qualitatively different from that of the cofactor. These results unambiguously demonstrate that the steric relationship between the phenol moiety and the supported copper(II) ion is decisive in the conversion of active-site tyrosine residues to the TPQ cofactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.