The static mechanical properties of major branches of the human arteries (common carotid artery, abdominal aorta, femoral artery, and brachial artery) were studied in 39 subjects, aged 6-81 years, using an ultrasonic phase locked echo tracking system that allows continuous transcutaneous measurement of the diameter of the artery. The stiffness indices were calculated from the relation between systemic blood pressure and arterial diameter. With advancing age there was a significant increase in the diameter of all arteries with a reduction in percentage change in diameter. The stiffness index increased with age in all arteries; however, in the brachial and femoral arteries there was considerable variation in the individual values for a given age. The age associated increase in stiffness was statistically significant only in the common carotid artery and the abdominal aorta. Although the mechanical properties of the peripheral arteries were significantly influenced by the measuring environment, the calculated stiffness indices were less vulnerable to these stimuli in the central arteries. These results indicate that the stiffness indices of the peripheral muscular arteries are modified appreciably by vasoactive stimuli and that the mechanical properties of the deeper elastic arteries provide sufficiently reliable information about changes caused by aging and arteriosclerosis. The new ultrasonic method used appears to be suitable for this analysis.
Chronic fatigue syndrome (CFS) is a heterogeneous disorder with uncertain pathogenesis. Without effective therapy, CFS is characterized by disabling fatigue, depression, memory loss, and somatic discomfort. This comprehensive and impartial review aimed to assess the available evidence and examined the potential clinical value of using cytokines for the monitoring of CFS and as targets for the treatment of CFS. Inflammatory reactions and immune modulation are considered to contribute to the pathophysiology of CFS, and it is well documented that cytokines present in both blood and cerebrospinal fluid (CSF) are closely associated with the progression and severity of CFS. However, pathophysiological and methodological limitations prevent using circulating cytokines as independent diagnostic indices. Moreover, there is no evidence to support the use of CSF cytokines as independent diagnostic indices. Nevertheless, a comprehensive evaluation of changes in circulating and CSF cytokines may improve clinical understanding of the pathophysiology of patients with CFS, aiding in the establishment of an appropriate diagnosis. Importantly, the available evidence does not support the value of cytokines as therapeutic targets. We believe that an improved understanding of cytokine-related mechanisms will be helpful to explore new cytokine-related therapeutic targets.
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.