We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall & Sundrum-type theory (RS1) [hep-ph/9905221] predicts that the brane with the negative tension is an anti-gravity world and hence should be excluded from the physical point of view. Their second-type theory (RS2) [hep-th/9906064] where the brane has the positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well-defined, such as in the case of the matter dominated by the potential energy of the scalar field.
We prove a uniqueness theorem for asymptotically flat static charged dilaton black hole solutions in higher dimensional space-times. We also construct infinitely many non-asymptotically flat regular static black holes on the same space-time manifold with the same spherical topology. An application to the uniqueness of a certain class of flat p-branes is also given.
Abstract:The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this 'black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for 'black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.