Kajian ini merangkum teknologi dan inovasi sistem pengendalian yang berpotensi diterapkan dalam intensifikasi proses hidrolisis selulosa pada produksi bioetanol G2. Telaah dimulai dari perkembangan terbaru intensifikasi produksi bioetanol secara umum. Hidrolisis selulosa adalah tahapan pembeda antara proses bioetanol G2 dan generasi sebelumnya. Perhatian utama dalam intensifikasi hidrolisis selulosa adalah pada bagaimana hidrolisis selulosa terintegrasi dengan sistem pengendalinya dan integrasi hidrolisis selulosa dengan bagian hulu (pretreatment) dan hilir (penyulingan). Keunikan proses ini adalah durasi kerja yang membutuhkan 48 jam dan viskositas campuran yang tergantung waktu. Bagian akhir telaah ini memetakan potensi penerapan teknologi dan inovasi terbaru yang telah dirangkum. Pemetaan berdasarkan potensi peningkatan efisiensi dan potensi tambahan investasi. Sakarifikasi Very High Gravity (VHG) pada kecepatan pengadukan optimum dan intermitten dinilai sebagai pilihan paling menarik bila intensifikasi dilakukan pada unit produksi yang telah berdiri. Namun jika intensifikasi untuk rancangan pabrik baru, maka tangki hidrolisis yang dirancang dengan simulasi CFD, dilengkapi dengan sekat (baffles) yang bergerak terkendali, dan rancangan batang pengaduk (impeller) paling cocok menurut simulasi adalah pilihan menarik. Rancangan ini kemudian diintegrasikan dengan sistem pengendali yang mampu memperkirakan perubahan viskositas. Review on Potency of Application Recent Technology in the Integrated Process and Control on Cellulose Hydrolysis in Bioethanol G2 Production ProcessAbstractThis review listed current technologies and innovations in the control system which potentially applied in the intensification of cellulose hydrolysis as part of 2nd Generation Bioethanol production process. The review started from the general latest innovations in the 2nd Generation Bioethanol. Cellulose hydrolysis as the main characteristics in the 2nd Generation of Bioethanol required further attention in the intensification. Especially in how to integrate cellulose hydrolysis with its control system and to integrate it with upstream and downstream units. The special requirements in cellulose hydrolysis are 48 hours agitation duration and time-dependent mixture viscosity. At the end of the review, listed technologies were assessed to be applied in the 2nd Generation Bioethanol. The assessment was based on their potency in increasing process efficiency and the potency of required investment if they are applied. A Very High Gravity (VHG) saccharification at optimum intermittent agitation speed was a promising innovation for cellulose hydrolysis if intensification was conducted onto the existing production plant. If intensification is conducted to a plant design, building an agitation tank according to best Computational Fluid Dynamic (CFD) simulation, complemented with controlled moving baffles and best suitable impeller design is a promising design for efficient hydrolysis. This agitation tank was then completed with the advanced available control system, which is capable to adapt the viscosity changes.
A huge amount of lignocellulosic wastes are disposed on an industrial scale as unused biomass both in Japan and in Southeast Asia; including forest thinnings of Japanese cedar wood and empty fruit bunches (EFB) of the oil palm tree. Supposing the production of platform compounds from such unused biomass through enzymatic saccharification, we have developed a cellulase-aid agent by the conversion of acetic acid lignin into an amphiphilic derivative (PE-AL). EFB pulps with 10% and 12% residual lignin and cedar pulp with 11% residual lignin were prepared by kraft and soda pulping processes, respectively, as a pretreatment of enzymatic saccharification. An addition of PE-AL significantly improved the saccharification yield of the cedar pulp, while it improved those of EFB pulps dramatically. After the enzymatic saccharification, the cellulase activity remained in the presence of PE-AL, although no activity was detected in the absence of PE-AL.日本および東南アジアで多量排出されるスギ間伐材やオイルパームの空果房(EFB)から酵素糖化を経てバイオエタノールなどのプラットフォーム化合物を製造することを想定して、本研究では、酵素糖化助剤となる両親媒性リグニン誘導体を開発し、スギおよびEFBの糖化に対する効果を検討した。酵素糖化のための前処理として、スギにはアルカリパルプ化、EFBにはクラフトパルプ化を行い、残存リグニン量約11%のスギパルプ、および残存リグニン量10%と12%のEFBパルプに対し糖化を行った。これらのパルプのセルラーゼ処理時に、リグニン誘導体を添加すると糖化率、特にEFBパルプに対し向上し、処理後も有意なセルラーゼ活性が検出された
Various sawmilling industries of high, medium and small enterprises operate in ABSTRAKIndustri penggergajian kayu baik skala kecil, menengah dan besar banyak beroperasi di Indonesia. Pada saat mengkonversi dolok menjadi kayu gergajian menghasilkan limbah kayu berupa potongan kecil dan serbuk gergaji. Potongan kecil kayu merupakan bahan berlignoselulosa yang berpotensi untuk menghasilkan etanol. Tulisan ini mempelajari kemungkinan pemanfaatan potongan kecil limbah kayu sengon untuk menghasilkan bioetanol. Pembuatan etanol, dilakukan dengan metode substrat konsentrasi tinggi dengan menghidrolisis substrat konsentrasi tinggi, yaitu 15, 25, dan 35% dan dua konsentrasi enzim (12,5 dan 15 FPU/g substrat). Hasil penelitian menunjukkan, perlakuan konsentrasi substrat 25% dan selulase 15 FPU/g substrat menghasilkan gula pereduksi tertinggi sebesar 248,3 mg/mL; sedangkan konsentrasi substrat 35% menghasilkan kadar etanol tertinggi sebesar 17,7% dengan rendemen sebesar 38,4%. Dapat disimpulkan bahwa metode substrat konsentrasi tinggi dapat menghasilkan kadar etanol yang tinggi pada limbah kayu sengon.Kata kunci: Limbah kayu sengon, lignoselulosa, hidrolisis, kadar etanol 231
Bioethanol is an alternative energy to reduce fossil fuels dependency as well as for industrial utilization. This study aims to investigate the effectiveness of bioethanol production from oil palm empty fruit bunch (OPEFB) in the pulp compare to its microcrystalline OPEFB by applying Separate Hydrolysis and Fermentation (SHF) method. The process was carried out by pretreatment using alkaline for both materials and then subjective to the bleaching process by applying H2O2 10% for microcrystalline OPEFB. Subsequently both pulp and its microcrystalline were subjected to enzymatic hydrolysis by cellulase 30 FPU/g to break lignocellulose chains into simple sugars. The final stage was fermentation process to convert glucose into ethanol by using Saccharomyces cerevisiae. Analysis of sugar, cellulose, and lignin content was performed by using the NREL method, and for ethanol content using a densitometer. This study revealed that the sugar conversion after hydrolysis by enzymes was 79.77% for microcrystalline and 66.76% for pulp. Meanwhile, the ethanol content in the microcrystalline was higher than the ethanol in the pulp that was 4.87% in the medium of 0.1% NPK and 0.3% urea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.