40Ar/39Ar laser-incremental heating of hornblende separated from pumice recovered at two hominid sites in Java, Indonesia, has yielded well-defined plateaus with weighted mean ages of 1.81 +/- 0.04 and 1.66 +/- 0.04 million years ago (Ma). The hominid fossils, a juvenile calvaria of Pithecanthropus and a partial face and cranial fragments of Meganthropus, commonly considered part of the Asian Homo erectus hypodigm, are at least 0.6 million years older than fossils referred to as Homo erectus (OH-9) from Olduvai Gorge, Tanzania, and comparable in age with the oldest Koobi Fora Homo cf. erectus (Homo ergaster) in Kenya. These ages lend further credence to the view that Homo erectus may have evolved outside of Africa. If the ancestor of Homo erectus ventured out of Africa before 1.8 Ma, the dispersal would have predated the advent of the Acheulean culture at 1.4 Ma, possibly explaining the absence of these characteristic stone cleavers and hand axes in East Asia.
Indonesia ͉ microcephaly ͉ skeletal pathology ͉ asymmetry ͉ dentition
Humans differ from other primates in their significantly lengthened growth period. The persistence of a fetal pattern of brain growth after birth is another important feature of human development. Here we present the results of an analysis of the 1.8-million-year-old Mojokerto child (Perning 1, Java), the only well preserved skull of a Homo erectus infant, by computed tomography. Comparison with a large series of extant humans and chimpanzees indicates that this individual was about 1 yr (0-1.5 yr) old at death and had an endocranial capacity at 72-84% of an average adult H. erectus. This pattern of relative brain growth resembles that of living apes, but differs from that seen in extant humans. It implies that major differences in the development of cognitive capabilities existed between H. erectus and anatomically modern humans.
Temporal changes, within-group variation, and phylogenetic positions of the Early Pleistocene Javanese hominids remain unclear. Recent debate focused on the age of the oldest Javanese hominids, but the argument so far includes little morphological basis for the fossils. To approach these questions, we analyzed a comprehensive dentognathic sample from Sangiran, which includes most of the existing hominid mandibles and teeth from the Early Pleistocene of Java. The sample was divided into chronologically younger and older groups. We examined morphological differences between these chronological groups, and investigated their affinities with other hominid groups from Africa and Eurasia. The results indicated that 1) there are remarkable morphological differences between the chronologically younger and older groups of Java, 2) the chronologically younger group is morphologically advanced, showing a similar degree of dentognathic reduction to that of Middle Pleistocene Chinese H. erectus, and 3) the chronologically older group exhibits some features that are equally primitive as or more primitive than early H. erectus of Africa. These findings suggest that the evolutionary history of early Javanese H. erectus was more dynamic than previously thought. Coupled with recent discoveries of the earliest form of H. erectus from Dmanisi, Georgia, the primitive aspects of the oldest Javanese hominid remains suggest that hominid groups prior to the grade of ca. 1.8-1.5 Ma African early H. erectus dispersed into eastern Eurasia during the earlier Early Pleistocene, although the age of the Javanese hominids themselves is yet to be resolved. Subsequent periods of the Early Pleistocene witnessed remarkable changes in the Javanese hominid record, which are ascribed either to significant in situ evolution or replacement of populations.
The Sambungmacan (Sm) 3 calvaria, discovered on Java in 1977, was illegally removed from Indonesia in 1998 and appeared in New York City in early 1999 at the Maxilla & Mandible, Ltd. natural history shop. Here we undertake an analysis of its phylogenetic and systematic position using geometric morphometrics and comparative morphology. The coordinates of points in the sagittal plane from glabella to opisthion were resampled to yield "lines" of 50 semi-landmarks. Coordinates of glabella, bregma, lambda, inion, and opisthion were also collected and analyzed separately. Casts of Homo erectus fossils from Indonesia, China, and Kenya and of "archaic H. sapiens" from Kabwe and Petralona, as well as 10 modern human crania, were used as the primary comparative sample. The modern humans were well separated from the fossils in a graphical superimposition of Procrustes-aligned semi-landmarks as well as in principal component and canonical discriminant analyses. In all of these, Sm 3 falls intermediate between the fossil and modern groups. Morphological comparisons of Sm 3 with a selection of Homo erectus fossils revealed its greatest similarity to specimens from Ngandong and the Sm 1 calvaria. Compared to all other H. erectus, Sm 3 was distinctive in its more vertical supratoral plane, less anteriorly projecting glabella and less sharply angled occiput. In these features it was somewhat similar to modern humans. It is not yet possible to determine if this similarity implies an evolutionary relationship or (more likely) individual or local populational variation. Several features of Sm 3 (small size, gracile supraorbital torus and lack of angular torus, and position in principal component analysis) suggest that it was a female. The use of geometric morphometrics provides a means to statistically test the shapes of such fossils in a manner not easily duplicated by other methods. The intermediate position of Sm 3 between fossil and modern samples in several different subanalyses exemplifies the value of this approach. Anat Rec 262: [380][381][382][383][384][385][386][387][388][389][390][391][392][393][394][395][396][397] 2001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.