In medical image segmentation, several studies have used Bayesian neural networks to segment and quantify the uncertainty of the images. These studies show that there might be an increased epistemic uncertainty in areas where there are semantically and visually challenging pixels. The uncertain areas of the image can be of a great interest as they can possibly indicate the regions of incorrect segmentation. To leverage the uncertainty information, we propose a segmentation model that incorporates the uncertainty into its learning process. Firstly, we generate the uncertainty estimate (sample variance) using Monte-Carlo dropout during training. Then we incorporate it into the loss function to improve the segmentation accuracy and probability calibration. The proposed method is validated on the publicly available EMIDEC MIC-CAI 2020 dataset that mainly focuses on segmentation of healthy and infarcted myocardium. Our method achieves the state of the art results outperforming the top ranked methods of the challenge. The experimental results show that adding the uncertainty information to the loss function improves the segmentation results by enhancing the geometrical and clinical segmentation metrics of both the scar and myocardium. These improvements are particularly significant at the visually challenging and difficult images which have higher epistemic uncertainty. The proposed system also produces more calibrated probabilities.
Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining threesequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore potential of solutions, as well as to provide a benchmark for future research. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. Note that MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.