The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887 μm survey of the disk population around objects from ∼2 to 0.03 M e in the nearby ∼2 Myr old ChamaeleonI star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45 au in radius. Assuming isothermal and optically thin emission, we convert the 887 μm flux densities into dust disk masses, hereafter M dust . We find that the -* M M dust relation is steeper than linear and of the form M dust ∝(M * )1.3-1.9 , where the range in the power-law index reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By reanalyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1-3 Myr old regions of Taurus, Lupus, and ChamaeleonI share the same -* M M dust relation, while the 10 Myr old UpperSco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.
The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μm or 85−125 μm and 125−210 μm, over a field of view of ∼1.75 × 3.5 , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47 × 47 , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions. Key words. space vehicles: instruments -instrumentation: photometers -instrumentation: spectrographsHerschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
We summarize the first results from the Gould Belt Survey, obtained toward the Aquila rift and Polaris Flare regions during the science demonstration phase of Herschel. Our 70-500 μm images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ∼350 and 500 prestellar cores and ∼45-60 Class 0 protostars can be identified in the Aquila field, while ∼300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.
We present the initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-mainsequence stars in the spectral type range K0-M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of the ages of between 1-30 Myr. The fraction of accreting stars decreases from ∼60% at 1.5-2 Myr to ∼2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of 10 −11 M yr −1 . We compared the fraction of stars showing ongoing accretion ( f acc ) to the fraction of stars with near-to-mid infrared excess ( f IRAC ). In most cases we find f acc < f IRAC , i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > ∼ 10 −11 M yr −1 , while ∼20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (τ acc ) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (τ IRAC ) of 3 Myr. Planet formation and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
The composition of a planet's atmosphere is determined by its formation, evolution, and present-day insolation. A planet's spectrum therefore may hold clues on its origins. We present a "chain" of models, linking the formation of a planet to its observable present-day spectrum. The chain links include (1) the planet's formation and migration, (2) its long-term thermodynamic evolution, (3) a variety of disk chemistry models, (4) a non-gray atmospheric model, and (5) a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL. In our standard chemistry model the inner disk is depleted in refractory carbon as in the Solar System and in white dwarfs polluted by extrasolar planetesimals. Our main findings are: (1) envelope enrichment by planetesimal impacts during formation dominates the final planetary atmospheric composition of hot Jupiters. We investigate two, under this finding, prototypical formation pathways: a formation inside or outside the water iceline, called "dry" and "wet" planets, respectively. (2) Both the "dry" and "wet" planets are oxygen-rich (C/O<1) due to the oxygen-rich nature of the solid building blocks. The "dry" planet's C/O ratio is <0.2 for standard carbon depletion, while the "wet" planet has typical C/O values between 0.1 and 0.5 depending mainly on the clathrate formation efficiency. Only non-standard disk chemistries without carbon depletion lead to carbonrich C/O ratios >1 for the "dry" planet. (3) While we consistently find C/O ratios <1, they still vary significantly. To link a formation history to a specific C/O, a better understanding of the disk chemistry is thus needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.