We present the initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-mainsequence stars in the spectral type range K0-M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of the ages of between 1-30 Myr. The fraction of accreting stars decreases from ∼60% at 1.5-2 Myr to ∼2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of 10 −11 M yr −1 . We compared the fraction of stars showing ongoing accretion ( f acc ) to the fraction of stars with near-to-mid infrared excess ( f IRAC ). In most cases we find f acc < f IRAC , i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > ∼ 10 −11 M yr −1 , while ∼20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (τ acc ) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (τ IRAC ) of 3 Myr. Planet formation and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
Aims. The composition of planetary solids and gases is largely rooted in the processing of volatile elements in protoplanetary disks. To shed light on the key processes, we carry out a comparative analysis of the gas-phase carbon abundance in two systems with a similar age and disk mass, but different central stars: HD 100546 and TW Hya. Methods. We combine our recent detections of C 0 in these disks with observations of other carbon reservoirs (CO, C + , C 2 H) and gas-mass and warm-gas tracers (HD, O 0 ), as well as spatially resolved ALMA observations and the spectral energy distribution. The disks are modelled with the DALI 2D physical-chemical code. Stellar abundances for HD 100546 are derived from archival spectra. Results. Upper limits on HD emission from HD 100546 place an upper limit on the total disk mass of ≤0.1 M . The gas-phase carbon abundance in the atmosphere of this warm Herbig disk is, at most, moderately depleted compared to the interstellar medium, with [C]/[H] gas = (0.1−1.5) × 10 −4 . HD 100546 itself is a λ Boötis star, with solar abundances of C and O but a strong depletion of rockforming elements. In the gas of the T Tauri disk TW Hya, both C and O are strongly underabundant, with [C]/[H] gas = (0.2−5.0)×10 −6 and C/O > 1. We discuss evidence that the gas-phase C and O abundances are high in the warm inner regions of both disks. Our analytical model, including vertical mixing and a grain size distribution, reproduces the observed [C]/[H] gas in the outer disk of TW Hya and allows to make predictions for other systems.
A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.
Context. Understanding the physical phenomena involved in the earlierst stages of protostellar evolution requires knowledge of the heating and cooling processes that occur in the surroundings of a young stellar object. Spatially resolved information from its constituent gas and dust provides the necessary constraints to distinguish between different theories of accretion energy dissipation into the envelope. Aims. Our aims are to quantify the far-infrared line emission from low-mass protostars and the contribution of different atomic and molecular species to the gas cooling budget, to determine the spatial extent of the emission, and to investigate the underlying excitation conditions. Analysis of the line cooling will help us characterize the evolution of the relevant physical processes as the protostar ages. Methods. Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied in the context of the WISH key program. For most targets, the spectra include many wavelength intervals selected to cover specific CO, H 2 O, OH, and atomic lines. For four targets the spectra span the entire 55-200 μm region. The PACS field-of-view covers ∼47 with the resolution of 9.4 . Results. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 out of 18 objects (except TMC1A), including 5 Class I sources. The high-excitation H 2 O 8 18 -7 07 63.3 μm line (E u /k B = 1071 K) is detected in 7 sources. CO transitions from J = 14−13 up to J = 49−48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of ∼350 K and ∼700 K. H 2 O has typical excitation temperatures of ∼150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern that depends on the species and the transition. In the extended sources, emission is stronger off source and extended on ≥10 000 AU scales; in the compact sample, more than half of the flux originates within 1000 AU of the protostar. The Conclusions. The PACS data probe at least two physical components. The H 2 O and CO emission very likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, most likely resulting from H 2 O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [O i] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H 2 O and CO, with the fraction contributed by [O i] increasing for Class I sources. Consistent with previous studies, the ratio of total far-infrared line emission over bolometric luminosity decreases with the evolutionary state.
The protoplanetary system HD 169142 is one of the few cases where a potential candidate protoplanet has recently been detected by direct imaging in the near-infrared. To study the interaction between the protoplanet and the disk itself, observations of the gas and dust surface density structure are needed. This paper reports new ALMA observations of the dust continuum at 1.3 mm, 12 CO, 13 CO, and C 18 O J = 2−1 emission from the system HD 169142 (which is observed almost face-on) at an angular resolution of ∼0 . 3 × 0 . 2 (∼35 × 20 au). The dust continuum emission reveals a double-ring structure with an inner ring between 0 . 17−0 . 28 (∼20−35 au) and an outer ring between 0 . 48−0 . 64 (∼56−83 au). The size and position of the inner ring is in good agreement with previous polarimetric observations in the near-infrared and is consistent with dust trapping by a massive planet. No dust emission is detected inside the inner dust cavity (R 20 au) or within the dust gap (∼35−56 au) down to the noise level. In contrast, the channel maps of the J = 2−1 line of the three CO isotopologs reveal gas inside the dust cavity and dust gap. The gaseous disk is also much larger than the compact dust emission; it extends to ∼1 . 5 (∼180 au) in radius. This difference and the sharp drop of the continuum emission at large radii point to radial drift of large dust grains (>µm size). Using the thermo-chemical disk code dali, we modeled the continuum and the CO isotopolog emission to quantitatively measure the gas and dust surface densities. The resulting gas surface density is reduced by a factor of ∼30−40 inward of the dust gap. The gas and dust distribution indicate that two giant planets shape the disk structure through dynamical clearing (dust cavity and gap) and dust trapping (double-ring dust distribution).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.