The mycobacterial insertion sequence IS6110 proved crucial in deciphering tuberculosis (TB) transmission dynamics. This sequence was also shown to play an important role in the pathogenicity (transmission ability and/or virulence) of Mycobacterium tuberculosis, the main causative agent of TB in humans. In this study, we explored the usefulness of IS6110 and its potential as a phylogenetic/typing marker. We also analyzed the genetic polymorphism and evolutionary trends (selective pressure) of its transposase-encoding open reading frames (ORFs), A and B, using the maximum likelihood method. Both ORFs evolved chronologically through random single nucleotide polymorphisms. They were subjected to strict purifying selection more tight on orfA, with no evidence of significant recombination events. OrfA proved to have a crucial role in regulating the transpositional process. Several analyses showed that IS6110 acquisition antedated the emergence of the Mycobacterium tuberculosis complex. This original copy of IS6110 element was functionally optimal. In conclusion, this study not only demonstrated the usefulness of IS6110 in terms of phylogenetic and typing purposes and its transpositional mechanism, but also informed the scientific community on its evolutionary history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.