BackgroundLebanon hosts a heterogeneous population coming from underdeveloped and developing countries, resulting in increasing incidences of tuberculosis over the past years. The genetic heterogeneity and lineages associated with tuberculosis, along with their resistance determinants have not been studied at the genomic level previously in the region.MethodsIsolates were recovered from the American University of Beirut Medical Center (AUBMC). Antimicrobial susceptibility profiles were determined using the MGIT automated system for the first-line drugs at AUBMC, while second-line drug susceptibility was tested at Mayo Clinic Laboratories. Whole Genome Sequencing (WGS) was performed to classify mycobacterial lineages and highlight single nucleotide mutations causing resistance to both 1st line and 2nd line antimicrobials. wgSNP analysis provided insights on the phylogeny of the isolates along with spoligotyping and core genomic SNVs, IS6110 insertion sites, and variable number tandem repeats (VNTR).ResultsThe analyzed isolates carry distinct resistance determinants to isoniazid, rifampicin, ethambutol, quinolones, and streptomycin. The isolates belonged to different lineages including the Euro/American lineage (Lineage 4) (53.8%), M. bovis (15.4%) and Delhi/Central Asia (Lineage 1) (15.4%), Beijing/East Asia (Lineage 2) (7.7%), and East Africa/Indian Ocean lineage (Lineage 3) (7.7%) showing great phylogenetic differences at the genomic level.ConclusionsThe population diversity in Lebanon holds an equally diverse and uncharacterized population of drug resistant mycobacteria. To achieve the WHO “END-TB” milestones of 2025 and 2035, Lebanon must decrease TB incidences by 95% in the next decade. This can only be done through WGS-based patient centered diagnosis with higher throughput and genomic resolution to improve treatment outcomes and to monitor transmission patterns.Electronic supplementary materialThe online version of this article (10.1186/s12879-018-3626-3) contains supplementary material, which is available to authorized users.