We consider an overlapping generations modelà la Diamond (1965) with two additional ingredients: altruism and an asset (or land) bringing non-stationary positive dividends (or fruits). We study the global dynamics of capital stocks and asset values as well as the interplay between them. Asset price bubbles are also investigated.
International audienceWe consider a model with an infinite number of states of nature, von Neumann–Morgenstern utilities, where agents have different probability beliefs and where short sells are allowed. We show that no-arbitrage conditions, defined for finite dimensional asset markets models, are not sufficient to ensure existence of equilibrium in presence of an infinite number of states of nature. However, if the individually rational utility set U is compact, we obtain an equilibrium. We give conditions which imply the compactness of U. We give examples of non-existence of equilibrium when these conditions do not hold
This article establishes a dynamic programming argument for a maximin optimization problem where the agent completes a minimization over a set of discount rates. Even though the consideration of a maximin criterion results in a program that is not convex and not stationary over time, it is proved that a careful reference to extended dynamic programming principles and a maxmin functional equation however allows for circumventing these difficulties and recovering an optimal sequence that is time consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.