The cicadas (Hemiptera: Cicadidae) related to tribe Cicadini exhibit some of the most remarkable phenotypes in the family, with many genera possessing striking colour patterns and unusual morphological features. This largely Asian group of 13 tribes has proven challenging for cicada taxonomists, in part because of likely convergent evolution or losses of these phenotypes. We present the first focused molecular phylogeny of this clade, including ~60 described genera. The genetic dataset contains 839 ingroup-informative sites (out of 2575) from mitochondrial cytochromec oxidase subunitI, nuclear elongation factor-1α, and nuclear acetyltransferase. We use Bayesian and maximum likelihood trees to test recent changes in tribe- and subtribe-level classification, and we reconstruct ancestral character states for potentially convergent traits influencing tribe descriptions. We use fossil and molecular clock calibrations to estimate the temporal and geographic context of the radiation. The tribes Gaeanini, Leptopsaltriini, Platypleurini, Psithyristriini, and Tosenini appear polyphyletic and in need of revision, in part because of convergent evolution of opaque wings and multiple convergent gains or losses of abdominal tubercles. Kalabita Moulton, 1923 is transferred from Platypleurini to Leptopsaltriini. Vittagaeana gen. nov. is established for Vittagaeana paviei comb. nov. and Vittagaeana dives comb. nov., formerly in Tosena. Sinosenini syn. nov. is synonymised with Dundubiina. Ayuthiini trib. nov. is established with two new subtribes for Ayuthia Distant, 1919 and Distantalna Boulard, 2009, formerly in Tosenini. For the earliest split in the tree, one common ancestor appears to have been Indian + Asian in geographic distribution and the other Asian. We estimate that the radiation began in the middle Cenozoic Era, possibly as recently as the early Miocene. The recent and steady pattern of diversification suggests that refinement of tribe diagnoses will prove challenging. http://zoobank.org:urn:lsid:zoobank.org:pub:5A6C16F4-5269-453B-BA5C-B29C3394683A
Contamination of a genetic sample with DNA from one or more non-target species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and Next-Generation Sequencing (NGS) studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on detection of bimodal distributions of patristic distances across gene trees. When the contamination occurs between samples within a dataset, comparisons between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a dataset generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the AHE markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned dataset, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution.
A new species of cicada, Orientopsaltria dongnaiensis sp. nov., (Hemiptera: Cicadidae) is described from southern Vietnam. Photos of the adult, illustrations of the male genitalia, a distribution map and biological data are provided.
Background On the basis of molecular dating, Pleistocene glaciations have been proposed as the major driving force of biota speciation in the Palearctic and the pre-Quaternary origin of Amazonian taxa. However, the major driving factors in East Asia remain unclear. All 16 saturniine species inhabiting Taiwan with congeners of populations, subspecies, or species in East Asia constitute research objects for addressing the mode of speciation because of the repeated formation and disappearance of a landbridge from the Asian mainland to Taiwan during glacial cycles. Methods The genetic divergences of mitochondrial cytochrome c oxidase subunit I (COI) and 16S rDNA and the nuclear 28S rDNA of the saturniine species from Taiwan and the Asian mainland were assessed to determine the monophyly of each genus and species of Saturniinae. Moreover, 519 saturniine COI sequences of 114 taxa from adjacent East and Southeast Asian populations and closely related species were retrieved from GenBank and analyzed. The differentiation timing and possible origination of the insular saturniines were elucidated based on phylogenetic relationships, haplotype networks, and lineage calibrations. Results Approximately 90% of intraspecific COI divergence was <2%; all divergences exceeding 2% originated from comparisons between allopatric populations or subspecies. Relationship analyses revealed that multiple introductions likely occurred in insular saturniines and that some East Asian saturniines were paraphyletic as deduced by analyzing endemic insular species. Calibration dating revealed that Taiwanese endemic saturniines split from sibling Asian species 0.2–2.7 million years ago (Mya), whereas subspecific-level and population-level splitting events occurred 0.1–1.7 Mya and 0.2–1.2 Mya, respectively. Moreover, phylogenetic patterns combined with geographical distributions revealed that hill-distributed Taiwanese saturniines are closely related to those from southern China and Southeast Asia, whereas saturniines inhabiting altitudes higher than 1,500 m in Taiwan have siblings distributed in temperate Northeast Asia. Discussion The Global DNA Barcoding Initiative was successfully applied to study the population genetic structure in species. Most Formosan saturniines are distinct and monophyletic, reflecting the vicariant barrier of the Taiwan Strait; Pleistocene glacial cycles provided opportunities for insular saturniines to experience repeated isolation from and secondary contact with the continental mainland. Each insular saturniine may have evolved with a unique differentiation timing pattern that possibly emerged in the Early, Middle, or Late Pleistocene with these patterns differing from the consistent pattern that occurred in the temperate Palearctic and tropical Amazonian regions. Moreover, multiple migrations or artificial genetic admixtures may have also occurred, as suggested by the coexistence of two divergent lineages in a few Taiwanese saturniines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.