The aim of the present study was to evaluate the re-shedding of T. gondii oocysts in cats fed tissue cysts of homologous and heterologous strains 12, 24 and 36 months after the first infection. Thirteen cats were used in the present study and were divided into four groups: G1 (n=2), G2 (n=3), G3 (n=5), and G4 (n=3). G1, G3 and G4 cats were infected with brain cysts of ME49 and G2 with TgDoveBr8, both genotype II strains of T. gondii. The G1 and G2 cats were re-infected after twelve months with brain cysts of VEG strain (genotype III), and G3 cats were re-infected with TgDoveBr1 (genotype II). The G3 cats were re-infected a third time after 24 months from the second infection, and the G4 cats were re-infected 36 months after the initial infection with cysts of the VEG strain. The cats' feces were evaluated using fecal flotation and genotyped with PCR-RFLP. The serological responses for IgM, IgA and IgG were determined by ELISA. All cats shed oocysts after the initial infection. Only one G1 cat shed oocysts when re-infected after twelve months with the VEG strain. No G2 cats excreted oocysts after the second infection with VEG. G3 cats, when re-infected after twelve months with the TgDoveBr1 strain, did not shed oocysts. However, when challenged after a third time with the VEG strain, three out of four cats shed oocysts. In the G4 group, when re-infected after thirty-six months with the VEG strain, two out of three cats shed oocysts. All oocyst samples were genotyped and characterized as the same genotype from the inoculum. Protection against oocyst re-excretion occurred in 90%, 25%, and 33.4% of cats after 12, 24, and 36 months from the initial infection, respectively. Therefore, the environmental contamination by oocysts from re-infected adult cats is only 30% lower than from kittens. In conclusion, the excretion of T. gondii oocysts was higher in experimentally re-infected cats throughout the years, especially when a heterologous strain was used.
Bovine coccidiosis is a disease of major importance in cattle herds across the world. The disorder mainly affects young calves, and E. bovis and E. zuernii are considered the most pathogenic species of the genus, however, E. alabamensis have been described in grazing calves. In this study, the prevalence of Eimeria spp. was evaluated in calves on dairy farms in the northern region of the state of Paraná, Brazil. Four hundred calves on 44 dairy farms were tested for the presence of coccidian oocysts. The positives were re-examined and the oocysts were morphometrically analyzed for species identification. All the farms were contaminated and 205 animals (51.25%) presented Eimeria spp. oocysts. Among these, 146 animals (71.22%) were co-infected by two or more species of coccidia. Ten species of Eimeria were identified: E. bovis (in 30.25% of the positive samples), E. alabamensis (26.75%), E. zuernii (22.00%), E. ellipsoidalis (18.50%), E. auburnensis (13.75%), E. canadensis (8.00%), E. cylindrica (7.25%), E. subspherica (5.00%), E. bukidnonensis (3.00%) and E. brasiliensis (0.75%). This study demonstrates the high prevalence of Eimeria spp. in the northern region of Paraná, Brazil, and detection for the first time in our region the pathogenic species E. alabamensis.
Toxoplasma gondii is an intracellular parasite that can infect all warm-blooded animals including humans. Recent studies showed that T. gondii strains from South America are genetically diverse. The present work aimed to determine T. gondii prevalence in free-ranging chicken in northwest Parana state in Brazil by two serological tests, to isolate the parasites from seropositive chickens and to genotype the isolates. Antibodies to T. gondii in 386 serum samples from 24 farms were investigated by immunofluorescence antibody assay (IFA) and modified agglutination test (MAT). Samples having titers ≥ 16 were considered positive for both tests. Among the 386 serum samples, 102 (26.4%) were positive for IFA, 64 (16.6%) were positive for MAT, 47 (12.2%) were positive in both tests, and 119 (30.8%) were positive in at least one of the two tests. Brain and pool of heart, lung, and liver from the 119 seropositive chickens were used for mouse bioassay to isolate the parasites. Thirty eight (31.9%) of these seropositive chickens were considered positives in mouse bioassay and 18 isolates were obtained. The isolates were characterized by 10 PCR-RFLP genetic markers including SAG1, SAG2 (5'-3'SAG2, alt.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. Results of genotyping were compared with the genotypes in ToxoDB database. It revealed ten genotypes, including ToxoDB PCR-RFLP genotypes #6 (n = 2), #19 (n = 1), #21 (n = 2), #111 (n = 2), #152 (n = 1), and #175 (n = 1) and four new types not described before. Our results confirmed a high genetic diversity of this parasite in southern Brazil and also showed that the use of two serological tests in combination can improve the chance of T. gondii isolation. More studies should be taken to determine the zoonotic potential of chickens in the transmission of T. gondii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.