Objective: To evaluate the expression of a set of miRNAs to identify differentially expressed miRNAs that might be considered reliable biomarkers on Diabetic Retinopathy (DR) blood samples. were analyzed in 60 healthy controls, 48 Diabetes Melitus (DM) without DR patients and 62 DR patients by qRT-PCR. MiR-320a was shown to be downregulated in the plasma of DR patients compared with DM patients without DR and healthy subjects. Target genes were predicted using miRWalk3.0, miR targeting data and target gene interaction data were imported to Cytoscape to visualize and merge networks and top ranked predicted genes were run through Ontology Genes to perform enrichment analysis on gene sets and classification system to identify biological processes and reactome pathways associated with DR. Highly scored target genes of miR-320a were categorized for various biological processes, including negative regulation of cell aging, negative regulation of cellular protein metabolic process and regulation of cellular response to stress that are critical to the development of DR. Our findings suggest that MiR-320a may have a role in the pathogenesis of DR and may represent novel biomarkers for this disease.
Results: Expression levels of
Diabetic Retinopathy, the main cause of visual loss and blindness among working population, is a complication of Diabetes mellitus (DM), which has been described as a major public health challenge, so it is important to identify biomarkers to predict and to stratify patient´s possibility for developing DR. MicroRNAs (miRNAs) are small non-coding RNA molecules that have showed to be promising disease biomarkers and association of miRNAs with the possibility to develop DR has been reported. However, evaluating miRNA expression involves normalization of RT-qPCR data using internal reference genes that should be properly determined, considering their impact on expression levels calculation and, until date, there is no unanimity on reference miRNAs for the investigation of circulating miRNAs in DR. We aimed to estimate the appropriateness of a group of miRNAs as normalizers to identify which might be considered steady internal reference genes in expression studies on DR plasma samples. Expression levels of candidates were analyzed in 60 healthy controls, 48 DM without DR patients and 62 DR patients with two statistical tools: NormFinder and RefFinder. MiR-328-3p was the most stable gene and we also investigated the effect of gene normalization, demonstrating that different normalization strategies have important implications for accurate data interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.