Osteogenesis imperfecta (OI) is mainly characterized by bone fragility and Ehlers-Danlos syndrome (EDS) by connective tissue defects. Mutations in
COL1A1
or
COL1A2
can lead to both syndromes. OI/EDS overlap syndrome is mostly caused by helical mutations near the amino-proteinase cleavage site of type I procollagen. In this study, we identified a Thai patient having OI type III, EDS, brachydactyly, and dentinogenesis imperfecta. His dentition showed delayed eruption, early exfoliation, and severe malocclusion. For the first time, ultrastructural analysis of the tooth affected with OI/EDS showed that the tooth had enamel inversion, bone-like dentin, loss of dentinal tubules, and reduction in hardness and elasticity, suggesting severe developmental disturbance. These severe dental defects have never been reported in OI or EDS. Exome sequencing identified a novel
de novo
heterozygous glycine substitution, c.3296G > A, p.Gly1099Glu, in exon 49 of
COL1A2
. Three patients with mutations in the exon 49 of
COL1A2
were previously reported to have OI with brachydactyly and intracranial hemorrhage. Notably, two of these three patients did not show hyperextensible joints and hypermobile skin, while our patient at the age of 5 years had not developed intracranial hemorrhage. Here, we demonstrate that the novel glycine substitution in the carboxyl region of alpha2(I) collagen triple helix leads to OI/EDS with brachydactyly and severe tooth defects, expanding the genotypic and phenotypic spectra of OI/EDS overlap syndrome.
Kabuki syndrome is a rare genetic disorder characterized by distinct dysmorphic facial features, intellectual disability, and multiple developmental abnormalities. Despite more than 350 documented cases, the oro-dental spectrum associated with kabuki syndrome and expression of KMT2D (histone-lysine N-methyltransferase 2D) or KDM6A (lysine-specific demethylase 6A) genes in tooth development have not been well defined. Here, we report seven unrelated Thai patients with Kabuki syndrome having congenital absence of teeth, malocclusion, high-arched palate, micrognathia, and deviated tooth shape and size. Exome sequencing successfully identified that six patients were heterozygous for mutations in KMT2D, and one in KDM6A. Six were novel mutations, of which five were in KMT2D and one in KDM6A. They were truncating mutations including four frameshift deletions and two nonsense mutations. The predicted non-functional KMT2D and KDM6A proteins are expected to cause disease by haploinsufficiency. Our study expands oro-dental, medical, and mutational spectra associated with Kabuki syndrome. We also demonstrate for the first time that KMT2D and KDM6A are expressed in the dental epithelium of human tooth germs.
This study for the first time demonstrates that the PITX2 mutation could lead to non-syndromic orodental anomalies in humans. We propose that the specific location in the C-terminal domain of PITX2 is exclusively necessary for tooth development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.