The molecular control of tooth development is different between the maxilla and mandible, contributing to different tooth shapes and locations; however, whether this difference occurs in human permanent teeth is unknown. The aim of this study was to investigate and compare the transcriptome profiles of permanent maxillary and mandibular posterior teeth. Ten participants who had a pair of opposing premolars or molars extracted were recruited. The RNA obtained from cultured dental pulp stem cells underwent RNA-sequencing and qRT-PCR. The transcriptome profiles of two opposing premolar pairs and two molar pairs demonstrated that the upper premolars, lower premolars, upper molars, and lower molars expressed the same top-ranked genes, comprising FN1, COL1A1, COL1A2, ACTB, and EEFIA1, which are involved in extracellular matrix organization, immune system, signal transduction, hemostasis, and vesicle-mediated transport. Comparative transcriptome analyses of each/combined tooth pairs demonstrated that PITX1 was the only gene with different expression levels between upper and lower posterior teeth. PITX1 exhibited a 64-fold and 116-fold higher expression level in lower teeth compared with their upper premolars and molars, respectively. These differences were confirmed by qRT-PCR. Taken together, this study, for the first time, reveals that PITX1 is expressed significantly higher in mandibular posterior teeth compared with maxillary posterior teeth. The difference is more evident in the molars compared with premolars and consistent with its expression pattern in mouse developing teeth. We demonstrate that differences in lower versus upper teeth gene expression during odontogenesis occur in permanent teeth and suggest that these differences should be considered in molecular studies of dental pulp stem cells. Our findings pave the way to develop a more precise treatment in regenerative dentistry such as gene-based therapies for dentin/pulp regeneration and regeneration of different tooth types.