BackgroundNitrite is a nitric oxide (NO) metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated.Methodology/FindingPlatelet aggregation was studied in platelet-rich plasma (PRP) and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM) inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger), suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes.ConclusionNitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.
Iron chelation can improve endothelial function. However, effect on endothelial function of deferiprone has not been reported. We hypothesized deferiprone could promote nitric oxide (NO) production in endothelial cells. We studied effects of deferiprone on blood nitrite and blood pressure after single oral dose (25 mg/kg) in healthy subjects and hemoglobin E/β-thalassemia patients. Further, effects of deferiprone on NO production and endothelial NO synthase (eNOS) phosphorylation in primary human pulmonary artery endothelial cells (HPAEC) were investigated in vitro. Blood nitrite levels were higher in patients with deferiprone therapy than those without deferiprone (P = 0.023, n = 16 each). Deferiprone increased nitrite in plasma and whole blood of healthy subjects (P = 0.002 and 0.044) and thalassemia patients (P = 0.003 and 0.046) at time 180 min (n = 20 each). Asymptomatic reduction in diastolic blood pressure (P = 0.005) and increase in heart rate (P = 0.009) were observed in healthy subjects, but not in thalassemia patients. In HPAEC, deferiprone increased cellular nitrite and phospho-eNOS (Ser1177) (P = 0.012 and 0.035, n = 6) without alteration in total eNOS protein and mRNA. We conclude that deferiprone can induce NO production by enhancing eNOS phosphorylation in endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.