This study aims to elucidate the effects of chrysin on human ER-negative breast cancer cell line, MDA-MB-231. The study demonstrated that treatment of MDA-MB-231 cells with 20 μM chysin for 48 h significantly inhibited the growth of MDA-MB-231 cells and induced cytoplasmic lipid accumulation in the cells, but that the observed of cell death was not caused by apoptosis. The expression of PPARalpha mRNA in chrysin-treated MDA-MB-231 cells was significantly increased, which was likely associated to the proliferation of the cells post chrysin treatment.
Abstract. This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.
excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (deGs) that are associated with the excessive accumulation of adipose tissues by Pcr arrays in an excess dietary intake animal model. For this purpose, male Sprague dawley rats were randomly assigned to 2 groups: control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). after 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total rna extraction and then reverse transcribed to cdna, which was then used as a template to identify the deGs of 84 transcripts for rat obesity by rT 2 Profiler PCR Arrays. The results showed significant downregulation of bombesin-like receptor 3 (BrS3) and uncoupling protein 1 (ucP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator-activated receptor-γ (PParG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet-induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.