Context: A methanol extract of Cyperus rotundus L. (Cyperaceae) rhizomes showed inhibitory activity against a-glucosidase and a-amylase, two enzymes involve in carbohydrate digestion. Objective: Identification of compounds from C. rotundus rhizomes responsible for the inhibition of a-glucosidase and a-amylase. Materials and methods: Compounds were identified by a phytochemical investigation using combined chromatographic and spectroscopic methods. a-glucosidase and a-amylase inhibitory activities were evaluated by in vitro enzyme inhibition assays.0 ,5,6,7,8-hexahydroxyflavane (1), together with three known stilbene dimers cassigarol E (2), scirpusin A (3) and B (4) were isolated. Compound 2 inhibited both a-glucosidase and a-amylase activities while the flavane 1 only showed effect on a-amylase, and compounds 3 and 4 were active on a-glucosidase. All four compounds showed significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Discussion: The inhibitory activities against a-amylase and a-glucosidase of the C. rotundus rhizomes were reported for the first time. Stilbene dimers are considered as potent inhibitors of a-glucosidase and promising antihyperglycemic agents. Conclusion: The isolated compounds may contribute to the antidiabetic property of C. rotundus.
The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe—which integrated in fiber laser structure—are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0–80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10−3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.
One new β-carboline alkaloid 7-methoxy-(9H-β-carbolin-1-il)-(E)-1-propenoic acid (1) together with 9-methoxycanthin-6-one (2) and 9-hydroxycanthin-6-one (3) were isolated from the hairy-root cultures of Eurycoma longifolia. The effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells were investigated. Compound 1 strongly inhibited the production of NO while 2 and 3 having weak or inactive effect. Consistently, compound 1 decreased the expression of cyclooxygenase-2 and inducible nitric oxide synthase.
Permethrin, 3-Phenoxybenzyl (1 RS)-cis,trans-3-(2,2-dichlorovinyl)- 2,2-dimethylcyclopropanecarboxylate, has a wide range of applications like insecticide, insect repellent and prevents mosquito-borne diseases, such as dengue fever and malaria in tropical areas. In this work, we develop a prominent monitoring method for the detection of permethrin pesticide using surface-enhanced Raman scattering (SERS) optical fibre substrates. The novel SERS-active optical fibre substrates were grown and deposited silver (Ag) nano-dendrites on the end of multi-mode fibre core by laser-assisted photochemical method. The characteristic of the Ag-nanostructures could be controlled by the experimental conditions, namely, laser illumination time. Ag nanoparticles optical fibre substrates and Ag nano-dendrites optical fibre substrates were prepared with laser illumination time of 3 min and 8 min, respectively. The achieved SERS-activity optical fibre substrates were tested with Rhodamine 6G aqueous solutions. We demonstrate that the SERS activity coupled with Ag nano-dendrites optical fibre substrate has higher Raman enhancement factor due to the creation of many of hot-spots for amplifying Raman signals. Besides, the stability and reproducibility of the Ag nano-dendrites optical fibre substrate were also evaluated with stored time of 1000 hours and relative standard deviation of less than 3%. The Ag nano-dendrite optical fibre substrate was selected for detection of permethrin pesticide in the concentration range of 0.1 ppm–20 ppm with limit of quantification (LOQ) of 0.1 ppm and calculated limit of detection (LOD) of 0.0035 ppm, proving its great potential for direct, rapid detection and monitoring of permethrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.