Dendritic polylysines (DPL) are highly branched nano-sized spherical polymer with positively charged primary amino groups on surface. This structural feature is useful for a delivery of antisense oligonucleotide or siRNA. In this study, we modified the surface of DPL with cyclic RGD (and iRGD) peptide by conjugation reaction generating RGD (and iRGD) peptide conjugated dendritic poly-lysines, RGD-DPL or iRGD-DPL. The prepared conjugates were evaluated for integrin receptor-mediated cellular delivery of antisense oligonucleotide. The conjugation of RGD or iRGD peptide on DPL was monitored by measuring the retention time in capillary zone electrophoresis and the absorbance at UV-Vis spectroscopy. Cellular delivery by DPL-RGD (or -iRGD)/antisense oligonucleotide complex was examined by antisense splicing correction assay on integrin alpha v/beta 3 positive A375B3-Luc cells, which were stably transfected with plasmid pLuc/705. DPL-RGD (or -iRGD)/antisense oligonucleotide complexes exhibited integrin receptor mediated uptake on A375B3 cells without inducing cellular toxicity. In addition, the delivery of antisense oligonucleotide was integrin receptor-dependent with moderate efficiency.
A series of pluronic grafted dendritic alpha,epsilon-poly(L-lysine)s (DPL-PF127) were synthesized by a conjugation reaction and evaluated the potential use of DPL-PF127 as a delivery agent of antisense oligonucleotide into A375 B3 cells. The structural features of the DPL-PF127 were identified by NMR and FT-IR. The number of pluronic F127 on DPL surface, determined by fluorescamine assay, increased proportionally to the mole ratio between DPL and activated PF127 in reaction. DPL- PF127 showed the physical properties of decrease in zetapotential and increase in size as the mole ratio of PF127 to DPL increased. The complex formation of DPL-PF127 with oligonucleotide was confirmed by running capillary zone electrophoresis (CZE) and agarose gel electrophoresis. DPL-PF127, prepared at the mole ratio of 1:10 in reaction, was the most suitable as a delivery adjuvant of oligonucleotide. In addition, DPL-PF127/oligonucleotide complexes were taken into A375B3 cell without cellular toxicity and delivered antisense oligonucleotide into cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.