The impact of imperfect channel state (CSI) information in an energy harvesting (EH) cooperative non-orthogonal multiple access (NOMA) network, consisting of a source, two users, and an EH relay is investigated in this paper. The relay is not equipped with a fixed power source and acts as a wireless powered node to help signal transmission to the users. Closedform expressions for the outage probability of both users are derived under imperfect CSI for two different power allocation strategies namely fixed and dynamic power allocation. Monte Carlo simulations are used to numerically evaluate the effect of imperfect CSI. These results confirm the theoretical outage analysis and show that NOMA can outperform orthogonal multiple access even with imperfect CSI.Index Terms-NOMA, imperfect CSI, SWIPT, energy harvesting, outage probability, Nakagami-m fading.
The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.