The combination of a low-pressure mercury lamp and chlorine (UV/chlorine) was applied as an emerging advanced oxidation process (AOP), to examine paracetamol (PRC) degradation under different operational conditions. The results indicated that the UV/chlorine process exhibited a much faster PRC removal than the UV/H2O2 process or chlorination alone because of the great contribution of highly reactive species (•OH, •Cl, and ClO•). The PRC degradation rate constant (kobs) was accurately determined by pseudo-first-order kinetics. The kobs values were strongly affected by the operational conditions, such as chlorine dosage, solution pH, UV intensity, and coexisting natural organic matter. Response surface methodology was used for the optimization of four independent variables (NaOCl, UV, pH, and DOM). A mathematical model was established to predict and optimize the operational conditions for PRC removal in the UV/chlorine process. The main transformation products (twenty compound structures) were detected by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS).
Polycyclic aromatic hydrocarbons (PAHs)—a large group of organic compounds—are extremely hazardous to human health. In this study, the 198 samples from six groups of daily food products in the Hanoi metropolitan area were collected and prepared by the QuEChERS sample treatment technique. The detection and identification of PAHs were obtained by gas chromatography–tandem mass spectrometry (GC–MS/MS) determination. The results demonstrated that the recovery of PAH compounds ranged approximately between 71% and 110% when the solvent evaporation condition was optimized using the nitrogen gas at a low temperature (1 °C). The in-house method was validated in terms of linearity, extractive condition, repeatability, recovery, limit of detection (LOD), and limit of quantification (LOQ). The ranges of average PAH levels were 9.3–9.6 µg/kg (for instant noodles), 0.22–2.48 µg/kg (for cakes) 0.91–4.83 µg/kg (dried vegetables), 5.14–23.32 µg/kg (teas), 4.82–24.35 µg/kg (coffees), and 1.43–25.2 µg/kg (grilled meats). The results indicated that the total concentrations of residual PAHs and benzo(a)pyrene in the instant noodles and grilled meat samples surpassed the maximum limits tolerated by the European Commission (35 µg/kg and 5 µg/kg, respectively) in many investigated samples.
A novel method was developed for the sensitive, cheap and fast quantitation of 10 phthalates in non-alcoholic beverages by liquid–liquid extraction (LLE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS). The best results were obtained when n-hexane was used as extraction solvent. A central composite design (CCD) was applied to select the most appreciated operating condition. The method performance was evaluated according to the SANTE/11945/2015 guidelines and was linear in the 0.1 to 200 µg/L range for 10 phthalate compounds, with r2 > 0.996 and individual residuals <15%. Repeatability (RSDr), within-laboratory reproducibility (RSDwr), and the trueness range were from 2.7 to 9.1%, from 3.4 to 14.3% and from 91.5 to 118.1%, respectively. The limit of detection (LOD) was between 0.5 to 1.0 ng/L and the limit of quantitation (LOQ) was between 1.5 to 3.0 ng/L for all 10 compounds. The developed method was successfully applied to the analysis of non-alcoholic beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.