In modern life, we face many problems, one of which is the increasingly serious traffic jam. The cause is the large volume of vehicles, inadequate infrastructure and unreasonable distribution, and ineffective traffic signal control. This requires finding methods to optimize traffic flow, especially during peak hours. To optimize traffic flow, it is necessary to determine the traffic density at each time in the streets and intersections. This paper proposed a novel approach to traffic density estimation using Convolutional Neural Networks (CNNs) and computer vision. The experimental results with UCSD traffic dataset show that the proposed solution achieved the worst estimation rate of 98.48% and the best estimation rate of 99.01%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.