This paper presents an effective decision making framework for software selection in manufacturing industries using a multiple criteria decision making method, Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE). The method is improved in the present work by integrating with analytic hierarchy process (AHP) and the fuzzy logic. Fuzzy logic is introduced to handle the imprecision of the human decision making process. The proposed decision making framework is practical for ranking competing software products in terms of their overall performance with respect to multiple criteria. An example is included to illustrate the approach.
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al2O3-40% TiO2 coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al2O3-40% TiO2 spray parameters on output parameters: surface rough
SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which significantly enhances the Mean Time Between Failure (MTBF). The final coating quality depends mainly on the coating thickness, surface roughness and hardness which ultimately decides the life. This paper presents an experimental study to effectively optimize the Atmospheric Plasma Spray (APS) process input parameters of Al2O3-40% TiO2 ceramic coatings to get the best quality of coating on commercial SS304 substrate. The experiments are conducted with a threelevel L18 Orthogonal Array (OA) Design of Experiments (DoE). Critical input parameters considered are: spray nozzle distance, substrate rotating speed, current of the arc, carrier gas flow and coating powder flow rate. The surface roughness, coating thickness and hardness are considered as the output parameters. Mathematical models are generated using regression analysis for individual output parameters. The Analytic Hierarchy Process (AHP) method is applied to generate weights for the individual objective functions and a combined objective function is generated. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is applied to the combined objective function to optimize the values of input parameters to get the best output parameters and confirmation tests are conducted based on that. The significant effects of spray parameters on surface roughness, coating thickness and coating hardness are studied in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.