Recent developments in mechanical applications have led to the development of metal matrix composites, which represent the future of composite structures. Al7010 aluminium alloy matrix with nano-ZrO2 and graphene particle reinforced composite is created in this experiment. By adopting the stir casting procedure in two different casting, 2 percent reinforcement of zirconium dioxide and 1 percent of graphene is included in the composite materials. The composite’s metallurgical and mechanical characteristics are studied. The SEM image demonstrates uniform dispersion of the particles in the alloy matrix. The manufactured material’s ability to gather particulate matter is clearly found in SEM and EDS. The addition of zirconia particles works together to prevent the alloy matrix from dislocating, which increases the base material’s hardness as well as its tensile resistance. Similar results are also found in graphene-casting material. Results from tensile tests reveal that adding nano-zirconium dioxide particle (ZrO2) and graphene boosts the material’s tensile and hardness strength. In terms of the ultimate tensile strength (UTS), the Al7010/2% ZrO2 composite had a 6% increase and Al7010/1% graphene had a 5.5% increase above the Al7010 alloy. Compared to Al7010 alloy, the microhardness of Al7010/ZrO2 is 17.64% greater and Al7010/1% graphene is 14% greater.