Buried metal objects in seawater may undergo corrosion because of the corrosive ions such as chloride ions present in seawater. However, a paint coating may control the corrosion of the metal objects such as robots. Corrosion resistance of mild steel in 3.5 % sodium chloride solution before and after coating with Asian guard red paint has been evaluated by polarization study and AC impedance spectra. In presence of Asian guard red paint, the linear polarization resistance increases, corrosion current decreases, charge transfer resistance increases, double layer capacitance decreases and impedance value increases. That is corrosion resistance of mild steel objects in 3.5 % sodium chloride solution increases after coating with Asian guard red paint.
The hull plates of the ship made of mild steel (MS) are always in contact with seawater are always in contact with aggressive ions such as chloride ions present in seawater.The corrosion resistance of the hull plates of the ship made of mild steel has been investigated by polarization study. Sandalwood oil extract containing 5 g each of Cardamom (disambiguation), Clove (disambiguation), Nutmeg, India Sambrani (loban), Chrysopogon zizanioides, commonly known as vetiver and Camphor was used as corrosion inhibitor along with Trisodium citrate (TSC), sodium dihydrogen phosphate (SDP) and Zn2+. The corrosion resistance was measured in the absence and presence of various inhibitor systems: Trisodium citrate (TSC) 100 ppm+ Zn2+ 50ppm system, sodium dihydrogen phosphate (SDP) 100 ppm+ Zn2+ 50ppm system, Oil coated (3days) MS, Oil coated (3days) MS +TSC 100 ppm+ Zn2+ 50 ppm system and Oil coated (3days) MS +SDP100 ppm+ Zn2+ 50 ppm system were used. It is observed that when mild steel is immersed in SW+TSC 100 ppm+ Zn2+ 50ppm system , the corrosion resistance of MS increases. When mild steel is immersed in SW+ SDP 100 ppm+ Zn2+ 50ppm system , the corrosion resistance of MS increases. When mild steel is immersed in Oil coated (3days) MS in Sea water system , the corrosion resistance of MS increases. When mild steel is immersed in Oil coated (3days) MS in SW+TSC 100 ppm+ Zn2+ 50ppm system , the corrosion resistance of MS increases. When mild steel is immersed in Oil coated (3 days) MS in SW+ SDP 100 ppm+ Zn2+ 50ppm system , the corrosion resistance of MS increases. This is revealed by the fact that there is increase in LPR value and decrease in corrosion current value. The corrosion potential is shifted to anodic side. This indicates that in this inhibitor system, the anodic reaction of metal dissolution is controlled predominantly. This implies that these inhibitor systems may be coated on mild steel surface used as hull plates to prevent corrosion of mild steel in sea water.
The corrosion resistance of SS 18/8 in natural sea water, in presence of an inhibitor named Thiourea-Zn2+ has been evaluated. Weight loss method, polarization study and AC impedance spectra have been employed to evaluate the corrosion resistance of SS 18/8 alloy in natural sea water, in presence of an inhibitor named Thiourea-Zn2+ system. Weight loss method reveals that Thiourea-Zn2+ system offers a maximum corrosion inhibition efficiency of 95% in controlling corrosion of SS 18/8 alloy in natural sea water. Synergism parameters are found to be greater than 1, confirming the synergistic effect existing between Thiourea-Zn2+. Adsorption of inhibitor molecules on the metal surface obey Langmuir adsorption isotherm. Polarisation study reveals that the inhibitors named Thiourea-Zn2+ system functions as mixed type of inhibitor. AC impedance spectra confirm the formation of a protective film on the metal surface. This formulation of Thiourea-Zn2+ may be used in cooling water systems where SS 18/8 alloy pipelines are used to carry sea water which is used as coolant. Also, Thiourea-Zn2+ coating can be given on SS 18/8 alloy to protect it from corrosion by sea water when SS 18/8 alloy is used as hull plates in ship industry.
Due to the importance of underwater exploration in the development and utilization of deep-sea resources, underwater autonomous operation is more and more important to avoid the dangerous high-pressure deep-sea environment. For underwater autonomous operation, intelligent computer vision is the most important technology. In an underwater environment, weak illumination and low-quality image enhancement, as a pre-processing procedure, is necessary for underwater vision. In this paper, introduced Deep learning-based Underwater Metal object detection using input Image data by using several step to improve the model performance. In this experimentation we are using TURBID dataset 100 images to validate the performance. And also we compare the performance result by given the input images in different validation level. In first input image is initially preprocessed and that images is given to the KFCM-Segmentation. The segmented images are given to the DWT Extraction to extract the features from those images. And finally the Convolution Neural Network (CNN) is used to classify the images to detect the objects. Also this proposed model attained the classification accuracy of 98.83%. This method is much suitable for detect the objects in underwater robotically. Metallic parts of machines of ships or airplanes may submerge in sea water. They may undergo corrosion when they come in contact with sea water which contains 3.5% sodium chloride. This is most commonly responsible for the corrosive nature of the seawater. The robots made of materials such as mild steel may also undergo corrosion when they come in contact with sea water, while is search. If a paint coating is given, it will control the corrosion of these proposed materials. Hence this work is undertaken. Mild steel is coated with Asian guard red paint. Corrosion resistance of mild in 3.5% sodium chloride solution is measured before coating and after coating by electrochemical studies such as polarization study and AC impedance spectra. The corrosion inhibition efficiency offered by red paint to mild steel in 3.5% sodium chloride is 99.98%.
Artificial intelligence is a branch of science concerned with teaching machines to think and act like humans. Machine learning is concerned with enabling computers to perform tasks without the need for explicit programming. Machine Learning enables computers to learn without the need for explicit programming. Machine Learning is a broad field that encompasses a wide range of machine learning operations such as clustering, classification, and the development of predictive models. Machine Learning (ML) and Deep Learning (DL) research is now finding a home in both industry and academia. Machine Learning technologies are increasingly being used in medical imaging. To detect tumours and other malignant growths in the human body. Deep Learning is making significant contributions to the advancement of industrial robotics. Machine learning algorithms are used in the self-driving car industry to guide the vehicle to its destination. Deep Learning and Machine Learning are also used in corrosion science and engineering. They are used to choose the inhibitor molecules from a large pool of available molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.