In this work, we report the role of ice-like water adlayers (IWLs) formed under ambient conditions in between mechanically exfoliated as-prepared and patterned few layer graphene (FLG) and multi-layer graphene (MLG) on hydrophobic Si and hydrophilic SiO2/Si substrates. The growth of the IWL is probed by measuring the height changes in graphene using intermittent contact atomic force microscopy (IC-AFM) and their electrostatic effect is studied using electrostatic force microscopy (EFM) over time. It is found that more IWLs are formed within a shorter period of time, when both as-prepared graphene and underlying substrates are either hydrophobic or hydrophilic in nature. In contrast, AFM voltage nanolithographically patterned trenches on FLG and MLG on the Si substrate show quick formation of IWLs. The effect of IWL formed, on the dimensions of trenches, is correlated with the variation of the measured EFM phase shift over time. This study demonstrates the dependence of the formation of IWLs under ambient conditions on the affinity towards water, at the interface of graphene on hydrophobic and hydrophilic substrates, which has important implications for the performance of graphene-based nanoelectronic devices.
In this work, we report the impact of the interaction and dynamics of increasing ambient water adlayers on etch patterns on a hydrophobic highly oriented pyrolytic graphite (HOPG) surface obtained using atomic force microscopy (AFM) voltage nanolithography in contact mode by applying a positive bias to the sample. The changes in the dimensions of the etch patterns were investigated as a function of the increasing number of water adlayers present on the HOPG, which is varied by changing the time interval since HOPG cleavage. Changes in the width of the etch patterns and the surrounding water droplets were monitored with time, using intermittent-contact-mode AFM. Electrostatic force microscopy (EFM) has been employed to study the charged nature of the etch patterns and the neighboring water film with time. The width of the etch patterns made on freshly cleaved HOPG shows an increase of ∼33% over 48 h, whereas nine-day-old cleaved HOPG shows a 79% increase over the same period. No changes in the dimensions are observed while imaging in a nitrogen atmosphere soon after lithography. In ambient conditions, the EFM phase shift of the patterns shows a large change of ∼84–88% over 30 h. This study demonstrates the effect of the stored electrostatic energy of a polarized ice-like water adlayer, resulting in changes in the dimensions of the etch patterns long after lithography, whereas liquid-like water droplets do not affect the etch patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.