Galectin-3 (Gal-3) is a β-galactoside binding protein that controls cell-cell and cell-extracellular matrix interactions. In lymphoid organs, gal-3 inhibits B cell differentiation by mechanisms poorly understood. The B cell development is dependent on tissue organization and stromal cell signaling, including IL-7 and Notch pathways. Here, we investigate possible mechanisms that gal-3 interferes during B lymphocyte differentiation in the bone marrow (BM) and spleen. The BM of gal-3-deficient mice (Lgals3−/− mice) was evidenced by elevated numbers of B220+CD19+c-Kit+IL-7R+ progenitor B cells. In parallel, CD45− bone marrow stromal cells expressed high levels of mRNA IL-7, Notch ligands (Jagged-1 and Delta-like 4), and transcription factors (Hes-1, Hey-1, Hey-2 and Hey-L). The spleen of Lgals3−/− mice was hallmarked by marginal zone disorganization, high number of IgM+IgD+ B cells and CD138+ plasma cells, overexpression of Notch ligands (Jagged-1, Delta-like 1 and Delta-like 4) by stromal cells and Hey-1. Morever, IgM+IgD+ B cells and B220+CD138+ CXCR4+ plasmablasts were significantly increased in the BM and blood of Lgals3−/− mice. For the first time, we demonstrated that gal-3 inhibits Notch signaling activation in lymphoid organs regulating earlier and terminal events of B cell differentiation.
Background The molecular pathways that drive bone marrow myeloid progenitors (BMMP) development are very well understood and include a tight controlled multi-stage gene hierarch. Monocytes are versatile cells that display remarkable plasticity and may give rise to specific subsets of macrophages to proper promote tissue homesostasis upon an injury. However, the epigenetic mechanisms that underlie monocyte differentiation into the pro-inflammatory Ly6C high or the repairing Ly6C low subsets are yet to be elucidated. We have previously shown that Epigenetic mechanisms Histone Deacetylase (HDAC) dependent are crucial for monocyte behavior and plasticity and in this work, we propose that this same mechanism underlies BMMP plasticity upon an inflammatory challenge in vivo. Methods BMMP were culture in the presence of GM-CSF alone or in combination with HDAC inhibitor (iHDAC) and phenotyped by flow cytometry, immune staining or western blot. iHDAC was topically added to skin wounds for 7 consecutive days and wound healing was monitored by flow cytometry and histopathological analysis. Results When BMMP were cultured in the presence of iHDAC, we showed that the CD11b low /Ly6C low subset was the specific target of iHDAC that underwent chromatin hyperacetylation in vitro. Upon 13 days in the presence of iHDAC, BMMP gave rise to very elongated macrophages, that in turn, displayed a remarkable plasticity in a HDAC activity dependent fashion. HDAC-dependent cell shape was tight related to macrophage behavior and phenotype through the control of iNOS protein levels, showing that chromatin remodeling is a key component of macrophage plasticity and function. We then hypothesized that iHDAC would modulate the inflammatory response and favor tissue repair in vivo. To test this hypothesis, we topically added iHDAC to skin wounds during 7 consecutive days and followed tissue repair dynamics. In fact, iHDAC treated skin wounds presented an increase in wound closure at day 5 that was correlated to an enrichment in the CD11b low /Ly6C low subset and in very elongated F4/80 positives macrophages in vivo, fully recapitulating the behavior previously observed in vitro. Conclusion Our work provides the biological basis that connects chromatin remodeling to phenotypic plasticity, which in turn, may become a tractable therapeutic strategy in further translational studies. Electronic supplementary material The online version of this article (10.1186/s12967-019-1998-9) contains supplementary material, which is available to authorized users.
BackgroundGalectin-3 is known to be a lectin that plays an important role in inflammatory processes, acting as pro-inflammatory mediator in activation and migration of neutrophils and macrophages, as well as in the phagocytic function of these cells. The injection of mineral oils into the peritoneal cavity of mice, such as 2, 6, 10, 14-tetramethylpentadecane (pristane), induce a chronic granulomatous inflammatory reaction which is rich in macrophages, B cells and peritoneal plasma cells known as oil granuloma. In addition, this inflammatory microenvironment provided by oil granulomas is also an important site of plasmacytoma induction, which are dependent on cytokine production and cellular mobilization.Here, we have analyzed the role of galectin-3 in inflammatory cells mobilization and organization after pristane injection characterizing granulomatous reaction through the formation of oil granulomas.ResultsIn galectin-3 deficient mice (gal-3−/−), the mobilization of inflammatory cells, between peritoneal cavity and bone marrow, was responsible for the formation of disorganized oil granulomas, which presented scattered cells, large necrotic areas and low amounts of extracellular matrix. The production of inflammatory cytokines partially explained the distribution of cells through peritoneal cavity, since high levels of IL-6 in gal-3−/− mice led to drastically reduction of B1 cells. The previous pro-inflammatory status of these animals also explains the excess of cell death and disruption of oil granulomas architecture.ConclusionsOur data indicate, for the first time, that the disruption in the inflammatory cells migration in the absence of galectin-3 is a crucial event in the formation and organization of oil granulomas.Electronic supplementary materialThe online version of this article (doi:10.1186/s12865-015-0133-9) contains supplementary material, which is available to authorized users.
Histone Deacetylase- (HDAC-) dependent epigenetic mechanisms have been widely explored in the last decade in different types of malignancies in preclinical studies. This effort led to the discovery and development of a range of new HDAC inhibitors (iHDAC) with different chemical properties and selective abilities. In fact, hematological malignancies were the first ones to have new iHDACs approved for clinical use, such as Vorinostat and Romidepsin for cutaneous T cell lymphoma and panobinostat for multiple myeloma. Besides these promising already approved iHDACs, we highlight a range of studies focusing on the HDAC-dependent epigenetic control of B cell development, behavior, and/or function. Here, we highlight 21 iHDACs which have been studied in the literature in the context of B cell development and/or dysfunction mostly focused on B cell lymphomagenesis. Regardless, we have identified 55 clinical trials using 6 out of 21 iHDACs to approach their putative roles on B cell malignancies; none of them focuses on peritoneal B cell populations. Since cells belonging to this peculiar body compartment, named B1 cells, may contribute to the development of autoimmune pathologies, such as lupus, a better understanding of the HDAC-dependent epigenetic mechanisms that control its biology and behavior might shed light on iHDAC use to manage these immunological dysfunctions. In this sense, iHDACs might emerge as a promising new approach for translational studies in this field. In this review, we discuss a putative role of iHDACs in the modulation of peritoneal B cell subpopulation’s balance as well as their role as therapeutic agents in the context of chronic diseases mediated by peritoneal B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.