One of the most puzzling aspects of the prion diseases is the intricate relationship between prion strains and interspecies transmissibility barriers. Previously we have shown that certain fundamental aspects of mammalian prion propagation, including the strain phenomenon and species barriers, can be reproduced in vitro in seeded fibrillization of the Y145Stop prion protein variant. Here, we use solid-state nuclear magnetic resonance spectroscopy to gain atomic level insight into the structural differences between Y145Stop prion protein amyloids from three species: human, mouse, and Syrian hamster. Remarkably, we find that these structural differences are largely controlled by only two amino acids at positions 112 and 139, and that the same residues appear to be key to the emergence of structurally distinct amyloid strains within the same protein sequence. The role of these residues as conformational switches can be rationalized based on a model for human Y145Stop prion protein amyloid, providing a foundation for understanding cross-seeding specificity.
The Y145Stop prion protein (PrP23–144), which has been linked to the development of a heritable prionopathy in humans, is a valuable in vitro model for elucidating the structural and molecular basis of amyloid seeding specificities. Here we report the sequential backbone and side-chain 13C and 15N assignments of mouse and Syrian hamster PrP23-144 amyloid fibrils determined by using 2D and 3D magic-angle spinning solid-state NMR. The assigned chemical shifts were used to predict the secondary structures for the core regions of the mouse and Syrian hamster PrP23-144 amyloids, and the results compared to those for human PrP23-144 amyloid, which has previously been analyzed by solid-state NMR techniques.
Despite breakthroughs in MAS NMR hardware and experimental methodologies sensitivity remains a major challenge for large and complex biological systems. Here, we report 3-4 fold higher sensitivities obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments for large assemblies that are otherwise time-prohibitive, such as 2D 15 N-15 N proton-driven spin diffusion and 15 N-13 C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins -demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of Declaration of interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Significant, 3-4 fold sensitivity gains are obtained experiments with a novel CPMAS CryoProbe.The benefits of CPMAS CryoProbe are demonstrated in heteronuclear-detected 2D and 3D experiments on five challenging biological assemblies.High-quality 2D NN and NCA/NCO spectra are obtained on U-15 N-CA tubular capsid assembly containing carbons at natural abundance.
Application of paramagnetic solid-state NMR to amyloids is demonstrated, using Y145Stop human prion protein modified with nitroxide spin-label or EDTA-Cu2+ tags as a model. By using sample preparation protocols based on seeding with pre-formed fibrils we show that paramagnetic protein analogs can be induced into adopting the wild-type amyloid structure. Measurements of residue-specific intramolecular and intermolecular paramagnetic relaxation enhancements enable determination of protein fold within the fibril core and protofilament assembly. These methods are expected to be widely applicable to other amyloids and protein assemblies.
Chromatin is a supramolecular DNA–protein complex that compacts eukaryotic genomes and regulates their accessibility and functions. Dynamically disordered histone H3 N-terminal tails are among key chromatin regulatory components. Here, we used high-resolution-magic-angle-spinning NMR measurements of backbone amide 15N spin relaxation rates to investigate, with residue-specific detail, the dynamics and interactions of H3 tails in recombinant 13C,15N-enriched nucleosome arrays containing 15, 30, or 60 bp linker DNA between the nucleosome repeats. These measurements were compared to analogous data available for mononucleosomes devoid of linker DNA or containing two 20 bp DNA overhangs. The H3 tail dynamics in nucleosome arrays were found to be considerably attenuated compared with nucleosomes with or without linker DNA due to transient electrostatic interactions with the linker DNA segments and the structured chromatin environment. Remarkably, however, the H3 tail dynamics were not modulated by the specific linker DNA length within the 15–60 bp range investigated here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.