We introduce a novel rule-based approach for handling regression problems. The new methodology carries elements from two frameworks: (i) it provides information about the uncertainty of the parameters of interest using Bayesian inference, and (ii) it allows the incorporation of expert knowledge through rule-based systems. The blending of those two different frameworks can be particularly beneficial for various domains (e.g. engineering), where, even though the significance of uncertainty quantification motivates a Bayesian approach, there is no simple way to incorporate researcher intuition into the model. We validate our models by applying them to synthetic applications: a simple linear regression problem and two more complex structures based on partial differential equations. Finally, we review the advantages of our methodology, which include the simplicity of the implementation, the uncertainty reduction due to the added information and, in some occasions, the derivation of better point predictions, and we address limitations, mainly from the computational complexity perspective, such as the difficulty in choosing an appropriate algorithm and the added computational burden.
Reduced-order models (ROMs) are computationally inexpensive simplifications of high-fidelity complex ones. Such models can be found in computational fluid dynamics where they can be used to predict the characteristics of multiphase flows. In previous work, we presented a ROM analysis framework that coupled compression techniques, such as autoencoders (AE), with Gaussian process (GP) regression in the latent space. This pairing has significant advantages over the standard encoding-decoding routine, such as the ability to interpolate or extrapolate in the initial conditions' space, which can provide predictions even when simulation data are not available. In this work, we focus on this major advantage and show its effectiveness by performing the pipeline on three multiphase flow applications. We also extend the methodology by using Deep Gaussian Processes (DGP) as the interpolation algorithm and compare the performance of our two variations, as well as another variation from the literature that uses Long short-term memory (LSTM) networks, for the interpolation. Impact StatementReduced-order models are popular in various engineering fields since they replicate the behavior of their complex counterparts using minimal computational resources. By combining machine learning (ML) algorithms we can not only construct these models but also extend them in such a way that they incorporate knowledge from physical parameters, among other advantages. One advantage is that we can use these hybrid models to provide predictions from physical parameters even where data are not available, bypassing the standard expensive procedure of running new (physical and/or numerical) experiments. In the present study, we use one such combination in order to illustrate how this framework can be used in this manner and compare it with variations of other ML algorithms.
Objectives/Scope A stable, single-well deconvolution algorithm has been introduced for well test analysis in the early 2000’s, that allows to obtain information about the reservoir system not always available from individual flow periods, for example the presence of heterogeneities and boundaries. One issue, recognised but largely ignored, is that of uncertainty in well test analysis results and non-uniqueness of the interpretation model. In a previous paper (SPE 164870), we assessed these with a Monte Carlo approach, where multiple deconvolutions were performed over the ranges of expected uncertainties affecting the data (Monte Carlo deconvolution). Methods, Procedures, Process In this paper, we use a non-linear Bayesian regression model based on models of reservoir behaviour in order to make inferences about the interpretation model. This allows us to include uncertainty for the measurements which are usually contaminated with large observational errors. We combine the likelihood with flexible probability distributions for the inputs (priors), and we use Markov Chain Monte Carlo algorithms in order to approximate the probability distribution of the result (posterior). Results, Observations, Conclusions We validate and illustrate the use of the algorithm by applying it to the same synthetic and field data sets as in SPE 164870, using a variety of tools to summarise and visualise the posterior distribution, and to carry out model selection. Novel/Additive Information The approach used in this paper has several advantages over Monte Carlo deconvolution: (1) it gives access to meaningful system parameters associated with the flow behaviour in the reservoir; (2) it makes it possible to incorporate prior knowledge in order to exclude non-physical results; and (3) it allows to quantify parameter uncertainty in a principled way by exploiting the advantages of the Bayesian approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.