Pulse width modulation (PWM) is a powerful technique employed in analog circuit convert with a microprocessor based digital output. Besides, Pseudo Random Multi Carrier (PRMC) involves in two random PWM strategies to minimize the harmonic order for 9- level cascaded multilevel H-bridge (CHB) inverter and 9-level Modular Multilevel inverter are introduced. The design mainly focuses on the (Pulse Width Modulation) PWM method, in which two nearest voltage levels are approached in estimated output voltage prediction based on the Partial swarm optimization (PSO) algorithm, and it conveys a random variation in the pulse position of output by Pseudo Random Multi Carrier- Pulse Width Modulation (PRMC-PWM). The CHB and the Modular inverters generate low distortion output by using PMRC. The simulation and prototype circuit are developed for the nine level output using sixteen switches and ten with Resistive-Inductive (R-L) load variation condition. The power quality is improved in CHB and Modular inverter (MoI) with minimized harmonics in various modulation index (MI) as varied from 0.1 up to 0.8. The circuit is designed by using a Field Programmable Gate Array (FPGA), Implementing a PSO algorithm for both CHB, and MoI are proposed. The comparisons of results are verified with lower order harmonics and find the best switching angle across the MLI switches. Modular inverter furthermore investigates with PRMC, Random Nearest level (RNL) modulation scheme are presented, and the proposed circuit is along with the respective degree of the output voltage were synthesized in non-linear load by the development of reactive power across a motor load.
Deep learning algorithms will be used to detect lung nodule anomalies at an earlier stage. The primary goal of this effort is to properly identify lung cancer, which is critical in preserving a person’s life. Lung cancer has been a source of concern for people all around the world for decades. Several researchers presented numerous issues and solutions for various stages of a computer-aided system for diagnosing lung cancer in its early stages, as well as information about lung cancer. Computer vision is one of the field of artificial intelligence this is a better way to detect and prevent the lung cancer. This study focuses on the stages involved in detecting lung tumor regions, namely pre-processing, segmentation, and classification models. An adaptive median filter is used in pre-processing to identify the noise. The work’s originality seeks to create a simple yet effective model for the rapid identification and U-net architecture based segmentation of lung nodules. This approach focuses on the identification and segmentation of lung cancer by detecting picture normalcy and abnormalities.
A Voltage lift performance is an excellent role to DC/DC conversion topology. The Voltage Lift Multilevel Inverter (VL-MLI) topology is suggested with minimal number of components compared to the conventional multilevel inverter (MLI). In this method, the Modified Particle Swarm Optimization (MPSO) conveys a primary task for the VL-MLI using Half Height (H-H) method, it determine the required optimum switching angles to eliminate desired value of harmonics. The simulation circuit for fifteen level output uses single switch voltage-lift inverter fed with resistive and inductive loads (R & L load). The power quality is developed by voltage-lift multilevel inverter with minimized harmonics under the various Modulation Index (MI) while varied from 0.1 up to 1. The circuit is designed in a Field Programmable Gate Array (FPGA), which includes the MPSO rules for fast convergence to reduce the lower order harmonics and finds the best optimum switching angle values. To report this problem the H-H has implemented with MPSO to reduce minimum Total Harmonic Distortion (THD) for simulation circuit using Proteus 7.7 simulink tool. Due to the absence of multiple switches, filter and inductor element exposes for novelty of the proposed system. The comparative analysis has been carried-out with existing optimization and modulation methods.
Conventionally in many countries, electrical power industry is organized as vertically integrated system. Under this system, large utilities are authoritative for the generation, transmission and distribution of electrical power. Such utilities are governed by the rules and regulations of the government and are forced to operate within the prescribed guidelines with minimal profit. This confirmation causes an ineffective and sluggish perspective in power industry with a lack of technical innovation, competent management and customer satisfaction. To overcome these deficiencies, power sector around the globe is getting restructured. This paper addresses an inevitable technical disputes occurring in deregulated environment i.e., transmission congestion which has an adverse effect on system security, increase in electricity pricing and line losses. Flexible AC Transmission System (FACTS) is a boon to the power sector which helps in a better and reliable power flow through the transmission lines. The problem is articulated as a multi objective function satisfying all the operational and security limits. Three heuristic algorithms namely Particle Swarm Optimization (PSO), Symbiotic Organism Search (SOS) and hybrid Quantum based PSO-Bio-geography based krill herd optimization (Q-PSOBBKH) algorithms were applied in finding solution to this complex congestion problem. To study the effectiveness of the proposed objective, IEEE 14 bus system was considered as the test system. In order to validate the proposed methodology three congestion cases i.e. bilateral transaction, multilateral transaction and overloading were imposed on the test bus system. Simulation was carried out in MATLAB.
Distributed Generating (DG) units, Energy Storage Systems (ESS), Distributed Reactive Sources (DRS), and resilient loads make up the microgrid (MG), which can operate in both connected and isolated modes. Because the amount of power generated by Renewable Energy Sources (RES) such as Wind Energy Systems (WES) and Photovoltaic Energy Systems (PVES) is unpredictable, it becomes difficult for MGs planners to make judgments. In this article, the uncertainties caused by RES are resolved through the successful application of a hybrid optimization approach and the integration of hybrid DGs. The Teaching Learning Algorithm (TLA) is used in this study to determine the best site for DGs and reconfiguration, and heuristic fuzzy has been merged with TLA to handle multi-objectives such as total generation and emission cost minimization, and bus voltage deviation. In addition, the impact of replacing RES with hybrid DGs on RES performance is investigated. The ideal structures are determined by solving four different scenarios with the suggested approach, allowing DSO to make decisions with greater flexibility. The proposed technique is validated using a benchmark IEEE 33 bus system that has been converted into a microgrid. WES, PVES, and hybrid DGs are validated using a 24-hour daily load pattern with 24-hour load dispatching characteristic behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.