Pull-ups are often used by sport-climbers and other athletes to train their arm and back muscle capabilities. Sport-climbers use different types of holds to reinforce finger strength concomitantly. However, the effect of grip types on pull-up performance had not previously been investigated. A vertical force platform sensor measured the force exerted by climbers when performing pull-ups under six different grip conditions (gym-bar, large climbing hold, and four small climbing holds: 22mm, 18mm, 14mm, and 10mm). The electromyography of finger flexors and extensor muscles were recorded simultaneously. The maximal arm power and summed mechanical work were computed. The results revealed that the number of pull-ups, maximal power, and summed mechanical work decreased significantly with the size of the climbing hold used, even if no differences were found between a large climbing hold and a gym-bar. Electromyography of the forearm muscles revealed that the use of a climbing hold generated finger flexor fatigue and that the level of cocontraction was impacted by the different segment coordination strategies generated during the pull-ups. These findings are likely to be useful for quantifying training loads more accurately and designing training exercises and programs.
Background Upper (UL) and lower limb (LL) cycling is extensively used for several applications, especially for rehabilitation for which neuromuscular interactions between UL and LL have been shown. Nevertheless, the knowledge on the muscular coordination modality for UL is poorly investigated and it is still not known whether those mechanisms are similar or different to those of LL. The aim of this study was thus to put in evidence common coordination mechanism between UL and LL during cycling by investigating the mechanical output and the underlying muscle coordination using synergy analysis. Methods Twenty-five revolutions were analyzed for six non-experts’ participants during sub-maximal cycling with UL or LL. Crank torque and muscle activity of eleven muscles UL or LL were recorded. Muscle synergies were extracted using nonnegative matrix factorization (NNMF) and group- and subject-specific analysis were conducted. Results Four synergies were extracted for both UL and LL. UL muscle coordination was organized around several mechanical functions (pushing, downing, and pulling) with a proportion of propulsive torque almost 80% of the total revolution while LL muscle coordination was organized around a main function (pushing) during the first half of the cycling revolution. LL muscle coordination was robust between participants while UL presented higher interindividual variability. Discussion We showed that a same principle of muscle coordination exists for UL during cycling but with more complex mechanical implications. This study also brings further results suggesting each individual has unique muscle signature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.