Hardware multithreading is becoming a generally applied technique in the next generation of microprocessors. Several multithreaded processors are announced by industry or already into production in the areas of high-performance microprocessors, media, and network processors.A multithreaded processor is able to pursue two or more threads of control in parallel within the processor pipeline. The contexts of two or more threads of control are often stored in separate on-chip register sets. Unused instruction slots, which arise from latencies during the pipelined execution of single-threaded programs by a contemporary microprocessor, are filled by instructions of other threads within a multithreaded processor. The execution units are multiplexed between the thread contexts that are loaded in the register sets.Underutilization of a superscalar processor due to missing instruction-level parallelism can be overcome by simultaneous multithreading, where a processor can issue multiple instructions from multiple threads each cycle. Simultaneous multithreaded processors combine the multithreading technique with a wide-issue superscalar processor to utilize a larger part of the issue bandwidth by issuing instructions from different threads simultaneously.Explicit multithreaded processors are multithreaded processors that apply processes or operating system threads in their hardware thread slots. These processors optimize the throughput of multiprogramming workloads rather than single-thread performance. We distinguish these processors from implicit multithreaded processors that utilize thread-level speculation by speculatively executing compiler- or machine-generated threads of control that are part of a single sequential program.This survey paper explains and classifies the explicit multithreading techniques in research and in commercial microprocessors.
Engineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution.parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores.
Organic Computing (OC) systems differ from classical software systems as the topology and the participating components of the system are not predefined and therefore are subject to unforeseeable change during the systems' runtime. Thus, completely new challenges to the verification and validation of such systems as well as for interactions between system components and, of course, between the system and the user arise. These challenges can be subsumed by the terms trustworthiness or trust.This paper proposes -after exploring the notions and principles of trust in the literature -a definition of trust which encompasses all aspects that define the trustworthiness of an Organic Computing system. It then outlines the different research challenges that have to be tackled in order to provide an understanding of trust in OC-systems and gives perspectives on how this endeavour can be taken on. Current research initiatives in the area of trust in computing systems are reviewed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.