Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca 2þ -binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca 2þ -dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
The arrangement of the musculature and connective tissues of the buccal mass of the coleoid cephalopods Octopus bimaculoides, Sepia officinalis, and Loliguncula brevis was examined using dissection and histology. Serial sections in three mutually perpendicular planes were used to identify the muscles and connective tissues responsible for beak movements and stability and to describe their morphology and fiber trajectories. Four major beak muscles were identified: the anterior, posterior, superior, and lateral mandibular muscles. The anterior, posterior, and superior mandibular muscles connect the upper beak and the lower beak. Although the lateral mandibular muscles originate on the upper beak, they do not connect to the lower beak and instead insert on a connective tissue sheath surrounding the buccal mass. Examination of the fibers of the lateral mandibular muscles reveals that they have the organization of a muscular hydrostat, with muscle fibers oriented in three mutually perpendicular orientations. Although the beaks are capable of complex opening, closing, and shearing movements, they do not contact one another and are instead connected only by the musculature of the buccal mass. Based on the morphological analysis and observations of freshly dissected beaks undergoing the stereotyped bite cycle, the functional role of the beak muscles is hypothesized. The anterior and superior mandibular muscles are likely responsible for beak closing and shearing movements. The posterior mandibular muscle is likely also involved in beak closing, but may act synergistically with the lateral mandibular muscles to open the beaks. The lateral mandibular muscles may use a muscular-hydrostatic mechanism to control the location of the pivot between the beaks and to generate the force required for beak opening. The lack of contact between the beaks and the morphology of the lateral mandibular muscles suggests that the buccal mass of coleoid cephalopods may represent a previously unexamined flexible joint mechanism. The term "muscle articulation" is proposed here to denote the importance of the musculature in the function of such a joint.
Titin has long been known to contribute to muscle passive tension. Recently, it was also demonstrated that titin-based stiffness increases upon Ca 2+ activation of wild-type mouse psoas myofibrils stretched beyond overlap of the thick and thin filaments. In addition, this increase in titin-based stiffness was impaired in single psoas myofibrils from mdm mice, characterized by a deletion in the N2A region of the Ttn gene. Here, we investigated the effects of activation on elastic properties of intact soleus muscles from wild-type and mdm mice to determine whether titin contributes to active muscle stiffness. Using load-clamp experiments, we compared the stress-strain relationships of elastic elements in active and passive muscles during unloading, and quantified the change in stiffness upon activation. Results from wild-type muscles show that upon activation, the elastic modulus increases, elastic elements develop force at 15% shorter lengths, and there was a 2.9-fold increase in the slope of the stress-strain relationship. These results are qualitatively and quantitatively similar to results from single wild-type psoas myofibrils. In contrast, mdm soleus showed no effect of activation on the slope or intercept of the stress-strain relationship, which is consistent with impaired titin activation observed in single mdm psoas myofibrils. Therefore, it is likely that titin plays a role in the increase of active muscle stiffness during rapid unloading. These results are consistent with the idea that, in addition to the thin filaments, titin is activated upon Ca 2+ influx in skeletal muscle.
SUMMARY The buccal mass musculature of the octopus (Octopus bimaculoides)was studied with electromyography to test the predictions of a previous morphological study in which we suggested that the muscles of the buccal mass serve as both the effectors of movement and as the joint itself, forming a new category of flexible joint termed a `muscle articulation'. The predictions of muscle function were tested by correlating muscle electrical activity in isolated buccal masses with spontaneous beak movements. Bipolar electromyography electrodes were implanted in the various beak muscles and beak position was recorded simultaneously with an electronic movement monitor(N=14). The results are consistent with the hypothesis that the lateral mandibular muscles produce opening movements of the beaks and provide the first definitive explanation of the opening mechanism. The results are also consistent with the hypothesis that the superior mandibular muscle functions primarily in closing. Co-contraction of the lateral mandibular muscles and the superior mandibular muscles was also observed, suggesting that these muscles may also stabilize the beaks during movement or provide a means of controlling the location of the pivot between the beaks. This study provides an important first test of the predictions of the role of the complex musculature found in muscle articulations such as the cephalopod buccal mass.
Several properties of muscle defy explanation solely based on the sliding filament-swinging cross-bridge theory. Indeed, muscle behaves as though there is a dynamic "spring" within the sarcomeres. We propose a new "winding filament" mechanism for how titin acts, in conjunction with the cross-bridges, as a force-dependent spring. The addition of titin into active sarcomeres resolves many puzzling muscle characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.