The present paper describes the Acoustic Emission (AE) behavior of concrete under four-point bending. Steel fibres of varying content were used as reinforcement in concrete slabs and their influence on the fracture process and the acoustic activity was investigated. The total acoustic emission (AE) activity was found to be directly proportional to the fibre content. Analysis revealed that particular AE parameters change monotonically with the progress of damage and can be used for the characterization of the failure process.
This work aims in studying the mechanical behaviour of concrete, reinforced with steel fibres of different geometry and volume fraction. Experiments include compression tests and four‐point bending tests. Slump and air content tests were performed on fresh concrete. The flexural toughness, flexural strength and residual strength factors of the beam specimens were evaluated in accordance with ASTM C1609/C1609M‐05 standard. Improvement in the mechanical properties, in particular the toughness, was observed with the increase of the volume fraction of steel‐fibres in the concrete. The fibre geometry was found to be a key factor affecting the mechanical performance of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.