Mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) regulate the initiation of translation through phosphorylation of eukaryotic initiation factor 4E (eIF4E). Mnk-mediated eIF4E activation promotes cancer development and progression. While the phosphorylation of eIF4E is necessary for oncogenic transformation, the kinase activity of Mnks seems dispensable for normal development. For this reason, pharmacological inhibition of Mnks could represent an ideal mechanism-based and nontoxic therapeutic strategy for cancer treatment. In this review, we discuss the current understanding of Mnk biological roles, structures, and functions, as well as clinical implications. Importantly, we propose different strategies for identification of highly selective small molecule inhibitors of Mnks, including exploring a structural feature of their kinase domain, DFD motif, which is unique within the human kinome. We also argue that a combined targeting of Mnks and other pathways should be considered given the complexity of cancer.
Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating transcription either through its association with the Mediator complex or by phosphorylating transcription factors. Myriads of genetic and biochemical studies have established CDK8 as a key oncogenic driver in many cancers. Specifically, CDK8-mediated activation of oncogenic Wnt-β-catenin signaling, transcription of estrogen-inducible genes, and suppression of super enhancer-associated genes contributes to oncogenesis in colorectal, breast, and hematological malignancies, respectively. However, while most research supports the role of CDK8 as an oncogene, other work has raised the possibility of its contrary function. The diverse biological functions of CDK8 and its seemingly context-specific roles in different types of cancers have spurred a great amount of interest and perhaps an even greater amount of controversy in the development of CDK8 inhibitors as potential cancer therapeutic agents. Herein, we review the latest landscape of CDK8 biology and its involvement in carcinogenesis. We dissect current efforts in discovering CDK8 inhibitors and attempt to provide an outlook at the future of CDK8-targeted cancer therapies.
Phosphorylation of eIF4E by human mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) is crucial for human tumourigenesis and development. Targeting Mnks may provide a novel anticancer therapeutic strategy. However, the lack of selective Mnk inhibitors has so far hampered pharmacological target validation and clinical drug development. Herein, we report, for the first time, the discovery of a series of 5-(2-(phenylamino)pyrimidin-4-yl)thiazole-2(3H)-one derivatives as Mnk inhibitors. Several derivatives demonstrate very potent Mnk2 inhibitory activity. The most active and selective compounds were tested against a panel of cancer cell lines, and the results confirm the cell-type-specific effect of these Mnk inhibitors. Detailed cellular mechanistic studies reveal that Mnk inhibitors are capable of reducing the expression level of anti-apoptotic protein Mcl-1, and of promoting apoptosis in MV4-11 acute myeloid leukaemia cells.
Dysregulation of cellular transcription and translation is a fundamental hallmark of cancer. As CDK9 and Mnks play pivotal roles in the regulation of RNA transcription and protein synthesis, respectively, they are important targets for drug development. We herein report the cellular mechanism of a novel CDK9 inhibitor CDKI-73 in an ovarian cancer cell line (A2780). We also used shRNA-mediated CDK9 knockdown to investigate the importance of CDK9 in the maintenance of A2780 cells. This study revealed that CDKI-73 rapidly inhibited cellular CDK9 kinase activity and down-regulated the RNAPII phosphorylation. This subsequently caused a decrease in the eIF4E phosphorylation by blocking Mnk1 kinase activity. Consistently, CDK9 shRNA was also found to down-regulate the Mnk1 expression. Both CDKI-73 and CDK9 shRNA decreased anti-apoptotic proteins Mcl-1 and Bcl-2 and induced apoptosis. The study confirmed that CDK9 is required for cell survival and that ovarian cancer may be susceptible to CDK9 inhibition strategy. The data also implied a role of CDK9 in eIF4E-mediated translational control, suggesting that CDK9 may have important implication in the Mnk-eIF4E axis, the key determinants of PI3K/Akt/mTOR- and Ras/Raf/MAPK-mediated tumorigenic activity. As such, CDK9 inhibitor drug candidate CDKI-73 should have a major impact on these pathways in human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.