Take-up judder is the first rigid body torsional mode of the clutch system, which occurs during clutch engagement. This phenomenon is induced by stick-slip oscillations at the friction lining interfaces between the clutch disc and flywheel, and the pressure plate. The phenomenon is influenced by the clutch lining friction characteristics, the topography of the mating-sliding surfaces and the operational conditions during the engagement process. Therefore, the interfacial characteristics are affected by contact pressure, interfacial slip speed and surface temperature. Take-up judder causes driver and vehicle occupant discomfort, as well as gradual wear of contacting surfaces. The response frequency of the system is reported to be in the range 5-20Hz, depending on the clutch system and vehicle inertia.In this paper the measured interfacial friction characteristics together with clamp load variation (contact pressure) under different surface temperatures are included in a multidegree of freedom dynamic analysis to obtain torsional vibrations of the system, pertaining to take-up judder conditions. Such an in-depth investigation has not hitherto been reported in literature. The paper shows that take-up judder is omnipresent under all clutch engagement conditions, but its poignancy is most evident at cold surface temperatures. It is also shown that the transient judder response has a broader spectral content that is generally acknowledged. Keywords Resistive torque Greek symbols Stiffness proportionality coefficient Damping ratioNon-dimensional time parameter
Dynamic behaviour of automotive dry clutches depends on the frictional characteristics of the contact between the friction lining material, the flywheel and the pressure plate during the clutch engagement process. During engagement due to high interfacial slip and relatively high contact pressures, generated friction gives rise to contact heat, which affects the material behaviour and the associated frictional characteristics. In practice excess interfacial slipping and generated heat during torque transmission can result in wear of the lining, thermal distortion of the friction disc and reduced useful life of the clutch. This paper provides measurement of friction lining characteristics for dry clutches for new and worn state under representative operating conditions pertaining to interfacial slipping during clutch engagement, applied contact pressures and generated temperatures. An analytical thermal partitioning network model of the clutch assembly, incorporating the flywheel, friction lining and the pressure plate is presented, based upon the principle of conservation of energy. The results of the analysis show a higher coefficient of friction for the new lining material which reduces the extent of interfacial slipping during clutch engagement, thus reducing the frictional power loss and generated interfacial heating. The generated heat is removed less efficiently from worn lining. This might be affected by different factors observed such as the reduced lining thickness and the reduction of density of the material but mainly due to poorer thermal conductivity due to the depletion of copper particles in its microstructure as the result of wear. The study integrates frictional characteristics, microstructural composition, mechanisms of heat generation, effect of lining wear and heat transfer in a fundamental manner, an approach not hitherto reported in literature.
Optimum operation of clutch systems is dictated by their dynamic as well as thermal performance. Both of these aspects are closely related to the interfacial frictional characteristics of the clutch lining material, which also affects the noise, vibration and harshness response of the entire vehicular powertrain system. Severe operating conditions such as interfacial clutch slip and increased contact pressures occur during clutch engagement, leading to generation of contact heat, and higher clutch system temperature. Therefore, any undesired oscillatory responses, generated during clutch engagement, such as take-up judder phenomenon can exacerbate generated heat due to stick-slip motion. The paper presents an integrated thermal, and 9-DOF dynamic model of a rear wheel drive light truck powertrain system. The model also includes experimentally measured clutch lining frictional variations with interfacial slip speed, non-linear contact pressure profile and generated surface flash temperature. It is shown that severe torsional oscillations known as take-up judder lead to an increased overall clutch temperature. It also shows that ageing of clutch lining material alters its dynamic and thermal performance.
Automotive clutches are prone to rigid body torsional vibrations during engagement, a phenomenon referred to as take-up judder. This is also accompanied by fore and aft vehicle motions. Aside from driver behaviour in sudden release of clutch pedal (resulting in loss of clamp load), and type and state of friction lining material, the interfacial slip speed and contact temperature can significantly affect the propensity of clutch to judder. The ability to accurately predict the judder phenomenon relies significantly on the determination of operational frictional characteristics of the clutch lining material. This is dependent upon contact pressure, temperature and interfacial slip speed. The current study investigates the ability to predict clutch judder vibration with the degree of complexity of the torsional dynamics model. For this purpose, the results from a four and nine degrees of freedom dynamics models are compared and discussed. Subsequently, the predictions are compared with the acquired data from an automotive driveline test rig. It is shown that the complexity of the dynamic model, intended for the study of a clutch system, can be as important as the thermo-mechanical and frictional properties of the clutch friction lining material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.