RNA interference (RNAi) is a universal and evolutionarily conserved phenomenon of post-transcriptional gene silencing by means of sequence-specific mRNA degradation, triggered by small double-stranded RNAs. Because this mechanism can be efficiently induced in vivo by expressing target-complementary short hairpin RNA (shRNA) from non-viral and viral vectors, RNAi is attractive for functional genomics and human therapeutics. Here we systematically investigate the long-term effects of sustained high-level shRNA expression in livers of adult mice. Robust shRNA expression in all the hepatocytes after intravenous infusion was achieved with an optimized shRNA delivery vector based on duplex-DNA-containing adeno-associated virus type 8 (AAV8). An evaluation of 49 distinct AAV/shRNA vectors, unique in length and sequence and directed against six targets, showed that 36 resulted in dose-dependent liver injury, with 23 ultimately causing death. Morbidity was associated with the downregulation of liver-derived microRNAs (miRNAs), indicating possible competition of the latter with shRNAs for limiting cellular factors required for the processing of various small RNAs. In vitro and in vivo shRNA transfection studies implied that one such factor, shared by the shRNA/miRNA pathways and readily saturated, is the nuclear karyopherin exportin-5. Our findings have fundamental consequences for future RNAi-based strategies in animals and humans, because controlling intracellular shRNA expression levels will be imperative. However, the risk of oversaturating endogenous small RNA pathways can be minimized by optimizing shRNA dose and sequence, as exemplified here by our report of persistent and therapeutic RNAi against human hepatitis B virus in vivo.
CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies
It has been recently shown that recombinant adeno-associated virus serotype 8 (rAAV8) is a robust alternative serotype vector that overcomes many of the limitations of rAAV2 and transduces various tissues efficiently and globally through systemic vector administration. AAV9 is a serotype newly isolated from human tissues, but our knowledge of the biology of rAAV9 in vivo is currently limited. Here, we demonstrate by a series of comprehensive side-by-side experiments with rAAV8 and 9 vectors delivered via different routes or at various doses in mice that rAAV9 vectors share the robustness of rAAV8, i.e., (1) very high liver transduction efficiency irrespective of whether vectors are administered intravascularly or extravascularly and (2) substantial transduction in the heart, skeletal muscle, and pancreas by peripheral vein injection. Importantly, rAAV9 transduced myocardium 5- to 10-fold higher than rAAV8, resulting in over 80% cardiomyocyte transduction following tail vein injection of as low as 1.0 x 10(11) particles per mouse. Thus rAAV9, as well as rAAV8, is a robust vector for gene therapy applications and rAAV9 is superior to rAAV8 specifically for cardiac gene delivery by systemic vector administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.