The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.
Now in its third decade of mechanistic investigation, testicular injury caused by 2,5-hexanedione (2,5-HD) exposure is a well-studied model with a rich database. The development of this model reflects the larger changes that have moved biology from a branch of chemistry into the molecular age. Critically examined in this review is the proposed mechanism for 2,5-HD-induced testicular injury in which germ cell maturation is disrupted owing to alterations in Sertoli cell microtubule-mediated functions. The goal is to evaluate the technical and conceptual approaches used to assess 2,5-HD-induced testicular injury, to highlight unanswered questions, and to identify fruitful avenues of future research.
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases cosponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.
Background: The direct-instillation nasal allergen challenge (NAC) and the environmental exposure chamber (EEC) are 2 methods of conducting controlled allergen provocations. The clinical and biological comparability of these methods has not been thoroughly investigated. Objective: We sought to compare clinical and immunologic responses to cat allergen in NAC versus EEC. Methods: Twenty-four participants were randomized to receive either NAC followed by a 2-day challenge in an EEC or a 2-day challenge in an EEC followed by NAC. Challenges were separated by 28-day washout periods. We measured total nasal symptom scores, peak nasal inspiratory flow, nasal (0-8 hours) and serum cytokines, serum antibodies, peripheral blood antigen-specific T lymphocytes, and gene expression in nasal scrapings. The primary outcome was the total nasal symptom score area under the curve for the first 3 hours after allergen exposure in NAC or after initiation of exposure in EEC. Results: Both challenges increased IL-5 and IL-13 in nasal fluids and serum and resulted in altered nasal cell expression of gene modules related to mucosal biology and transcriptional regulation. Changes in gene modules, more so than cytokine measurements, showed significant associations with total nasal symptom score and peak nasal inspiratory flow. Overall, EEC exposure generated larger responses and more early terminations compared with NAC. Although the 2 challenges did not correlate in symptom magnitude or temporality, striking correlations were observed in cytokine levels. Conclusions: Although clinical outcomes of NAC and EEC were temporally different and nonequivalent in magnitude, immunologic responses were similar. Selection of a particular allergen challenge method should depend on considerations of study objectives and cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.